ترغب بنشر مسار تعليمي؟ اضغط هنا

The orbits of subdwarf B + main-sequence binaries. I: The sdB+G0 system PG 1104+243

337   0   0.0 ( 0 )
 نشر من قبل Joris Vos
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The predicted orbital period histogram of an sdB population is bimodal with a peak at short (< 10 days) and long (> 250 days) periods. Observationally, there are many short-period sdB systems known, but only very few long-period sdB binaries are identified. As these predictions are based on poorly understood binary interaction processes, it is of prime importance to confront the predictions to observational data. In this contribution we aim to determine the absolute dimensions of the long-period sdB+MS binary system PG1104+243. High-resolution spectroscopy time-series were obtained with HERMES at the Mercator telescope at La Palma, and analyzed to obtain radial velocities of both components. Photometry from the literature was used to construct the spectral energy distribution (SED) of the binary. Atmosphere models were used to fit this SED and determine the surface gravity and temperature of both components. The gravitational redshift provided an independent confirmation of the surface gravity of the sdB component. An orbital period of 753 +- 3 d and a mass ratio of q = 0.637 +- 0.015 were found from the RV-curves. The sdB component has an effective temperature of Teff = 33500 +- 1200 K and a surface gravity of logg = 5.84 +- 0.08 dex, while the cool companion is found to be a G-type star with Teff = 5930 +- 160 K and logg = 4.29 +- 0.05 dex. Assuming a canonical mass of Msdb = 0.47 Msun, the MS component has a mass of 0.74 +- 0.07 Msun, and its Teff corresponds to what is expected for a terminal age main-sequence star with sub-solar metalicity. PG1104+243 is the first long-period sdB binary in which accurate physical parameters of both components could be determined, and the first sdB binary in which the gravitational redshift is measured. Furthermore, PG1104+243 is the first sdB+MS system that shows consistent evidence for being formed through stable Roche-lobe overflow.



قيم البحث

اقرأ أيضاً

The predicted orbital-period distribution of the subdwarf-B (sdB) population is bi-modal with a peak at short (< 10 days) and long (> 500 days) periods. Observationally, many short-period sdB systems are known, but only few wide sdB binaries have bee n studied in detail. Based on a long-term monitoring program the wide sdB sample has been increased, finding an unexpected correlation between the eccentricity and period. In this article we present the orbital solution and spectral analysis of four new systems, BD-7.5977, EC11031-1348, TYC2084-448-1 and TYC3871-835-1, and update the orbital solution of PG1104+243. Using the whole sample of wide sdBs, we aim at finding possible correlations between orbital and spectral properties, with as goal improving theoretical models of Roche-lobe overflow. High-resolution spectra were obtained to determine the radial velocities of both the sdB and MS components. Surface gravities and temperatures of both component were derived from photometric spectral-energy distributions. Spectral parameters of the cool companion were verified using the GSSP code. Furthermore the amount of accreted mass was estimated. Orbital parameters matching the earlier observed period-eccentricity relation were found for three systems, while TYC 2084-448-1 is found to have a lower eccentricity than expected from the period-eccentricity trend indicated by the other systems. Based on new observations, the orbit of PG 1104+243 has a small but significant eccentricity of 0.04 $pm$ 0.02, matching other systems with similar periods. Furthermore, a correlation between accreted mass and orbital period was found, as well as a possible relation between the initial mass-ratio and the final period-eccentricity. The wide sdB-binary sample shows interesting possible correlations between orbital and spectral properties. However, a larger sample is necessary to statistically validate them.
Hot subdwarf-B (sdB) stars in long-period binaries are found to be on eccentric orbits, even though current binary-evolution theory predicts these objects to be circularised before the onset of Roche-lobe overflow (RLOF). To increase our understandin g of binary interaction processes during the RLOF phase, we started a long term observing campaign to study wide sdB binaries. In this article we present a composite-binary-sdB sample, and the results of the spectral analysis of 9 such systems. The grid search in stellar parameters (GSSP) code is used to derive atmospheric parameters for the cool companions. To cross-check our results and also characterize the hot subdwarfs we used the independent XTgrid code, which employs Tlusty non-local thermodynamic equilibrium models to derive atmospheric parameters for the sdB component and Phoenix synthetic spectra for the cool companions. The independent GSSP and XTgrid codes are found to show good agreement for three test systems that have atmospheric parameters available in the literature. Based on the rotational velocity of the companions, an estimate for the mass accreted during the RLOF phase and the miminum duration of that phase is made. It is found that the mass transfer to the companion is minimal during the subdwarf formation.
The predicted orbital-period distribution of the subdwarf-B (sdB) population is bi-modal with a peak at short (< 10 days) and long (> 250 days) periods. Observationally, many short-period sdB systems are known, but the predicted long period peak is m issing as orbits have only been determined for a few long-period systems. As these predictions are based on poorly understood binary-interaction processes, it is of prime importance to confront the predictions with reliable observational data. We therefore initiated a monitoring program to find and characterize long-period sdB stars. In this paper we aim to determine the orbital parameters of the three long-period sdB+MS binaries BD+29 3070, BD+34 1543 and Feige 87, to constrain their absolute dimensions and the physical parameters of the components. High-resolution spectroscopic time series were obtained with HERMES at the Mercator telescope on La Palma, and analyzed to determine the radial velocities of both the sdB and MS components. Photometry from the literature was used to construct the spectral-energy distribution (SED) of the binaries. Atmosphere models were used to fit these SEDs and to determine the surface gravities and temperatures of both components of all systems. Spectral analysis was used to check the results of the SEDs. An orbital period of 1283 +- 63 d, a mass ratio of q = 0.39 +- 0.04 and a significant non-zero eccentricity of e = 0.15 +- 0.01 were found for BD+29 3070. For BD+34 1543 we determined P = 972 +- 2 d, q = 0.57 +- 0.01 and again a clear non-zero eccentricity of e = 0.16 +- 0.01. Last, for Feige 87 we found P = 936 +- 2 d, q = 0.55 +- 0.01 and e = 0.11 +- 0.01. BD+29 3070, BD+34 1543 and Feige 87 are long period sdB + MS binaries on clearly eccentric orbits. These results are in conflict with the predictions of stable Roche-lobe overflow models.
Context: OB stars are important in the chemistry and evolution of the Universe, but the sample of targets well understood from an asteroseismological point of view is still too limited to provide feedback on the current evolutionary models. Our study extends this sample with two spectroscopic binary systems. AIMS. Our goal is to provide orbital solutions, fundamental parameters and abundances from disentangled high-resolution high signal-to-noise spectra, as well as to analyse and interpret the variations in the Kepler light curve of these carefully selected targets. This way we continue our efforts to map the instability strips of beta Cep and SPB stars using the combination of high-resolution ground-based spectroscopy and uninterrupted space-based photometry. Methods: We fit Keplerian orbits to radial velocities measured from selected absorption lines of high-resolution spectroscopy using synthetic composite spectra to obtain orbital solutions. We use revised masks to obtain optimal light curves from the original pixel-data from the Kepler satellite, which provided better long term stability compared to the pipeline processed light curves. We use various time-series analysis tools to explore and describe the nature of variations present in the light curve. Results: We find two eccentric double-lined spectroscopic binary systems containing a total of three main sequence B-type stars (and one F-type component) of which at least one in each system exhibits light variations. The light curve analysis (combined with spectroscopy) of the system of two B stars points towards the presence of tidally excited g modes in the primary component. We interpret the variations seen in the second system as classical g mode pulsations driven by the kappa mechanism in the B type primary, and explain the unexpected power in the p mode region as a result of nonlinear resonant mode excitation.
We present examples of an extended asteroseismic modelling in which we aim at fitting not only pulsational frequencies but also certain complex parameter related to each frequency. This kind of studies, called textbf{complex asteroseismology}, has be en successfully applied to a few main sequence B-type pulsators and provided, in particular, plausible constraints on textbf{stellar opacities}. Here, we briefly describe our results for three early B-type stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا