ترغب بنشر مسار تعليمي؟ اضغط هنا

Improve the Maximum Transmission Distance of Four-State Continuous Variable Quantum Key Distribution by using a Noiseless Linear Amplifier

66   0   0.0 ( 0 )
 نشر من قبل Bingjie Xu
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A modified four-state CVQKD protocol is proposed to increase the maximum transmission distance and tolerable excess noise in the presence of Gaussian lossy and noisy channel by using a noiseless linear amplifier (NLA). A NLA with amplitude gain g can increase the maximum admission losses by 20log(g) dB.


قيم البحث

اقرأ أيضاً

Quantum key distribution provides secure keys resistant to code-breaking quantum computers. The continuous-variable version of quantum key distribution offers the advantages of higher secret key rates in metropolitan areas, as well as the use of stan dard telecom components that can operate at room temperature. However, the transmission distance of these systems (compared with discrete-variable systems) are currently limited and considered unsuitable for long-distance distribution. Herein, we report the experimental results of long distance continuous-variable quantum key distribution over 202.81 km of ultralow-loss optical fiber by suitably controlling the excess noise and employing highly efficient reconciliation procedures. This record-breaking implementation of the continuous-variable quantum key distribution doubles the previous distance record and shows the road for long-distance and large-scale secure quantum key distribution using room-temperature standard telecom components.
Quantum key distribution (QKD) which enables the secure distribution of symmetric keys between two legitimate parties is of great importance in future network security. Access network that connects multiple end-users with one network backbone can be combined with QKD to build security for end-users in a scalable and cost-effective way. Though previous QKD access networks are all implemented in the upstream direction, in this paper, we prove that downstream access network can also be constructed by using continuous-variable (CV) QKD. The security of the CV-QKD downstream access network is analyzed in detail, where we show the security analysis is secure against other parties in the network. The security analysis we proved corresponds to the downstream access network where only passive beamsplitter is sufficient to distribute the quantum signals and no other active controls are demanded. Moreover, standard CV-QKD systems can be directly fitted in the downstream access network, which makes it more applicable for practical implementations. Numerous simulation results are provided to demonstrate the performance of the CV-QKD downstream access network, where up to 64 end-users are shown to be feasible to access the network. Our work provides the security analysis framework for realizing QKD in the downstream access network which will boost the diversity for constructing practical QKD networks.
41 - Xuyang Wang , Siyou Guo , Pu Wang 2018
In this work, the rate-distance limit of continuous variable quantum key distribution is studied. We find that the excess noise generated on Bobs side and the method for calculating the excess noise restrict the rate-distance limit. Then, a realistic rate-distance limit is found. To break the realistic limit, a method for calculating the secret key rate using pure excess noise is proposed. The improvement in the rate-distance limit due to a higher reconciliation efficiency is analyzed. It is found that this improvement is dependent on the excess noise. From a finite-size analysis, the monotonicity of the Holevo bound versus the transmission efficiency is studied, and a tighter rate-distance limit is presented.
We introduce a robust scheme for long-distance continuous-variable (CV) measurement-device-independent (MDI) quantum key distribution (QKD) in which we employ post-selection between distant parties communicating through the medium of an untrusted rel ay. We perform a security analysis that allows for general transmissivity and thermal noise variance of each link, in which we assume an eavesdropper performs a collective attack and controls the excess thermal noise in the channels. The introduction of post-selection enables the parties to sustain a secret key rate over distances exceeding those of existing CV MDI protocols. In the worst-case scenario in which the relay is positioned equidistant between them, we find that the parties may communicate securely over a range of 14 km in standard optical fiber. Our protocol helps to overcome the rate-distance limitations of previously proposed CV MDI protocols while maintaining many of their advantages.
In this work, a comparison study between unidimensional (UD) coherent-state and UD squeeze-state protocols is performed in the continuous variable quantum key distribution domain. First, the UD squeeze-state protocol is proposed and the equivalence b etween the prepare-and-measure and entanglement-based schemes of UD squeeze-state protocol is proved. Then, the security of the UD squeeze-state protocol under collective attack in realistic conditions is analyzed. Lastly, the performances of the two UD protocols are analyzed. Based on the uniform expressions established in our study, the squeeze-state and coherent-state protocols can be analyzed simultaneously. Our results show that the UD squeeze-state protocols are quite different from the two-dimensional protocols in that the UD squeeze-state protocols have a poorer performance compared with UD coherent-state protocols, which is opposite in the case of two-dimensional protocols.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا