ترغب بنشر مسار تعليمي؟ اضغط هنا

Virtues and limitations of the truncated Holstein-Primakoff description of quantum rotors

258   0   0.0 ( 0 )
 نشر من قبل Jorge G. Hirsch
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A Hamiltonian describing the collective behaviour of N interacting spins can be mapped to a bosonic one employing the Holstein-Primakoff realisation, at the expense of having an infinite series in powers of the boson creation and annihilation operators. Truncating this series up to quadratic terms allows for the obtention of analytic solutions through a Bogoliubov transformation, which becomes exact in the limit N -> infinit. The Hamiltonian exhibits a phase transition from single spin excitations to a collective mode. In a vicinity of this phase transition the truncated solutions predict the existence of singularities for finite number of spins, which have no counterpart in the exact diagonalization. Renormalisation allows to extract from these divergences the exact behaviour of relevant observables with the number of spins around the phase transition, and relate it with the class of universality to which the model belongs. In the present work a detailed analysis of these aspects is presented for the Lipkin model.

قيم البحث

اقرأ أيضاً

Quantum channels underlie the dynamics of quantum systems, but in many practical settings it is the channels themselves that require processing. We establish universal limitations on the processing of both quantum states and channels, expressed in th e form of no-go theorems and quantitative bounds for the manipulation of general quantum channel resources under the most general transformation protocols. Focusing on the class of distillation tasks -- which can be understood either as the purification of noisy channels into unitary ones, or the extraction of state-based resources from channels -- we develop fundamental restrictions on the error incurred in such transformations and comprehensive lower bounds for the overhead of any distillation protocol. In the asymptotic setting, our results yield broadly applicable bounds for rates of distillation. We demonstrate our results through applications to fault-tolerant quantum computation, where we obtain state-of-the-art lower bounds for the overhead cost of magic state distillation, as well as to quantum communication, where we recover a number of strong converse bounds for quantum channel capacity.
We import the tools of Morse theory to study quantum adiabatic evolution, the core mechanism in adiabatic quantum computations (AQC). AQC is computationally equivalent to the (pre-eminent paradigm) of the Gate model but less error-prone, so it is ide ally suitable to practically tackle a large number of important applications. AQC remains, however, poorly understood theoretically and its mathematical underpinnings are yet to be satisfactorily identified. Through Morse theory, we bring a novel perspective that we expect will open the door for using such mathematics in the realm of quantum computations, providing a secure foundation for AQC. Here we show that the singular homology of a certain cobordism, which we construct from the given Hamiltonian, defines the adiabatic evolution. Our result is based on E. Wittens construction for Morse homology that was derived in the very different context of supersymmetric quantum mechanics. We investigate how such topological description, in conjunction with Gauss-Bonnet theorem and curvature based reformulation of Morse lemma, can be an obstruction to any computational advantage in AQC. We also explore Conley theory, for the sake of completeness, in advance of any known practical Hamiltonian of interest. We conclude with the instructive case of the ferromagnetic $p-$spin where we show that changing its first order quantum transition (QPT) into a second order QPT, by adding non-stoquastic couplings, amounts to homotopically deform the initial surface accompanied with birth of pairs of critical points. Their number reaches its maximum when the system is fully non-stoquastic. In parallel, the total Gaussian curvature gets redistributed (by the Gauss--Bonnet theorem) around the new neighbouring critical points, which weakens the severity of the QPT.
We consider the non-equilibrium dynamics arising after a quench of the transverse magnetic field of a quantum Ising chain, together with the sudden switch-on of a long-range interaction term. The dynamics after the quantum quench is mapped onto a ful ly-connected model of hard-core bosons, after a suitable combination of a Holstein-Primakoff transformation and of a low-density expansion in the quasi-particles injected by the quench. This mapping holds for a broad class of initial states and for quenches which do not cross the critical point of the transverse field Ising model. We then study the algebraic relaxation in time of a number of observables towards a metastable, pre-thermal state, which becomes the asymptotic steady state in the thermodynamic limit.
The non-Markovianity of an arbitrary open quantum system is analyzed in reference to the multi-time statistics given by its monitoring at discrete times. On the one hand, we exploit the hierarchy of inhomogeneous transfer tensors, which provides us w ith relevant information about the role of correlations between the system and the environment in the dynamics. The connection between the transfer-tensor hierarchy and the CP-divisibility property is then investigated, by showing to what extent quantum Markovianity can be linked to a description of the open-system dynamics by means of the composition of 1-step transfer tensors only. On the other hand, we introduce the set of stochastic transfer tensor transformations associated with local measurements on the open system at different times and conditioned on the measurement outcomes. The use of the transfer-tensor formalism accounts for different kinds of memory effects in the multi-time statistics and allows us to compare them on a similar footing with the memory effects present in non-monitored non-Markovian dynamics, as we illustrate on a spin-boson case study.
This paper presents the geometric setting of quantum variational principles and extends it to comprise the interaction between classical and quantum degrees of freedom. Euler-Poincare reduction theory is applied to the Schrodinger, Heisenberg and Wig ner-Moyal dynamics of pure states. This construction leads to new variational principles for the description of mixed quantum states. The corresponding momentum map properties are presented as they arise from the underlying unitary symmetries. Finally, certain semidirect-product group structures are shown to produce new variational principles for Diracs interaction picture and the equations of hybrid classical-quantum dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا