ترغب بنشر مسار تعليمي؟ اضغط هنا

Homological Description of the Quantum Adiabatic Evolution With a View Toward Quantum Computations

153   0   0.0 ( 0 )
 نشر من قبل Raouf Dridi Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We import the tools of Morse theory to study quantum adiabatic evolution, the core mechanism in adiabatic quantum computations (AQC). AQC is computationally equivalent to the (pre-eminent paradigm) of the Gate model but less error-prone, so it is ideally suitable to practically tackle a large number of important applications. AQC remains, however, poorly understood theoretically and its mathematical underpinnings are yet to be satisfactorily identified. Through Morse theory, we bring a novel perspective that we expect will open the door for using such mathematics in the realm of quantum computations, providing a secure foundation for AQC. Here we show that the singular homology of a certain cobordism, which we construct from the given Hamiltonian, defines the adiabatic evolution. Our result is based on E. Wittens construction for Morse homology that was derived in the very different context of supersymmetric quantum mechanics. We investigate how such topological description, in conjunction with Gauss-Bonnet theorem and curvature based reformulation of Morse lemma, can be an obstruction to any computational advantage in AQC. We also explore Conley theory, for the sake of completeness, in advance of any known practical Hamiltonian of interest. We conclude with the instructive case of the ferromagnetic $p-$spin where we show that changing its first order quantum transition (QPT) into a second order QPT, by adding non-stoquastic couplings, amounts to homotopically deform the initial surface accompanied with birth of pairs of critical points. Their number reaches its maximum when the system is fully non-stoquastic. In parallel, the total Gaussian curvature gets redistributed (by the Gauss--Bonnet theorem) around the new neighbouring critical points, which weakens the severity of the QPT.



قيم البحث

اقرأ أيضاً

We describe a general methodology for enhancing the efficiency of adiabatic quantum computations (AQC). It consists of homotopically deforming the original Hamiltonian surface in a way that the redistribution of the Gaussian curvature weakens the eff ect of the anti-crossing, thus yielding the desired improvement. Our approach is not pertubative but instead is built on our previous global description of AQC in the language of Morse theory. Through the homotopy deformation we witness the birth and death of critical points whilst, in parallel, the Gauss-Bonnet theorem reshuffles the curvature around the changing set of critical points. Therefore, by creating enough critical points around the anti-crossing, the total curvature--which was initially centered at the original anti-crossing--gets redistributed around the new neighbouring critical points, which weakens its severity and so improves the speedup of the AQC. We illustrate this on two examples taken from the literature.
192 - T. Huckle , K. Waldherr , 2012
The computation of the ground state (i.e. the eigenvector related to the smallest eigenvalue) is an important task in the simulation of quantum many-body systems. As the dimension of the underlying vector space grows exponentially in the number of pa rticles, one has to consider appropriate subsets promising both convenient approximation properties and efficient computations. The variational ansatz for this numerical approach leads to the minimization of the Rayleigh quotient. The Alternating Least Squares technique is then applied to break down the eigenvector computation to problems of appropriate size, which can be solved by classical methods. Efficient computations require fast computation of the matrix-vector product and of the inner product of two decomposed vectors. To this end, both appropriate representations of vectors and efficient contraction schemes are needed. Here approaches from many-body quantum physics for one-dimensional and two-dimensional systems (Matrix Product States and Projected Entangled Pair States) are treated mathematically in terms of tensors. We give the definition of these concepts, bring some results concerning uniqueness and numerical stability and show how computations can be executed efficiently within these concepts. Based on this overview we present some modifications and generalizations of these concepts and show that they still allow efficient computations such as applicable contraction schemes. In this context we consider the minimization of the Rayleigh quotient in terms of the {sc parafac} (CP) formalism, where we also allow different tensor partitions. This approach makes use of efficient contraction schemes for the calculation of inner products in a way that can easily be extended to the mps format but also to higher dimensional problems.
We examine mathematical questions around angle (or phase) operator associated with a number operator through a short list of basic requirements. We implement three methods of construction of quantum angle. The first one is based on operator theory an d parallels the definition of angle for the upper half-circle through its cosine and completed by a sign inversion. The two other methods are integral quantization generalizing in a certain sense the Berezin-Klauder approaches. One method pertains to Weyl-Heisenberg integral quantization of the plane viewed as the phase space of the motion on the line. It depends on a family of weight functions on the plane. The third method rests upon coherent state quantization of the cylinder viewed as the phase space of the motion on the circle. The construction of these coherent states depends on a family of probability distributions on the line.
450 - Frank Gaitan , Lane Clark 2011
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers $R(m,n)$ with $m,ngeq 3$, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers $R( m,n)$. We show how the computation of $R(m,n)$ can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for $5leq sleq 7$. We then discuss the algorithms experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class QMA.
We derive a version of the adiabatic theorem that is especially suited for applications in adiabatic quantum computation, where it is reasonable to assume that the adiabatic interpolation between the initial and final Hamiltonians is controllable. As suming that the Hamiltonian is analytic in a finite strip around the real time axis, that some number of its time-derivatives vanish at the initial and final times, and that the target adiabatic eigenstate is non-degenerate and separated by a gap from the rest of the spectrum, we show that one can obtain an error between the final adiabatic eigenstate and the actual time-evolved state which is exponentially small in the evolution time, where this time itself scales as the square of the norm of the time-derivative of the Hamiltonian, divided by the cube of the minimal gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا