ترغب بنشر مسار تعليمي؟ اضغط هنا

22GHz water maser survey of Xinjiang Astronomical Observatory

117   0   0.0 ( 0 )
 نشر من قبل Jian-Jun Zhou
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Water masers are good tracers of high-mass star-forming regions. Water maser VLBI observations provide a good probe to study high-mass star formation and the galactic structure. We plan to make a blind survey toward the northern Galactic plane in future years using 25m radio telescope of Xinjiang Astronomical Observatory. We will select some water maser sources discovered in the survey and make high resolution observations and study the gas kinematics close to the high-mass protostar.



قيم البحث

اقرأ أيضاً

The atmospheric water vapor content above the Roque de los Muchachos Observatory (ORM) obtained from Global Positioning Systems (GPS) is presented. GPS measurements have been evaluated by comparison with 940nm-radiometer observations. Statistical ana lysis of GPS measurements points to ORM as an observing site with suitable conditions for infrared (IR) observations, with a median column of precipitable water vapor (PWV) of 3.8 mm. PWV presents a clear seasonal behavior, being Winter and Spring the best seasons for IR observations. The percentage of nighttime showing PWV values smaller than 3 mm is over 60% in February, March and April. We have also estimated the temporal variability of water vapor content at the ORM. A summary of PWV statistical results at different astronomical sites is presented, recalling that these values are not directly comparable as a result of the differences in the techniques used to recorded the data.
223 - R. J. Hanisch 2015
The U.S. Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the U.S. coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within the U.S. National Virtual Observatory, and summarizes its main accomplishments. These accomplishments include the development of both scripting toolkits that allow scientists to incorporate VO data directly into their reduction and analysis environments and high-level science applications for data discovery, integration, analysis, and catalog cross-comparison. Working with the international community, and based on the experience from the software development, the VAO was a major contributor to international standards within the International Virtual Observatory Alliance. The VAO also demonstrated how an operational virtual observatory could be deployed, providing a robust operational environment in which VO services worldwide were routinely checked for aliveness and compliance with international standards. Finally, the VAO engaged in community outreach, developing a comprehensive web site with on-line tutorials, announcements, links to both U.S. and internationally developed tools and services, and exhibits and hands-on training .... All digital products of the VAO Project, including software, documentation, and tutorials, are stored in a repository for community access. The enduring legacy of the VAO is an increasing expectation that new telescopes and facilities incorporate VO capabilities during the design of their data management systems.
This paper reports observations of a 22 GHz water maser `superburst in the G25.65+1.05 massive star forming region, conducted in response to an alert from the Maser Monitoring Organisation (M2O). Very long baseline interferometry (VLBI) observations using the European VLBI Network (EVN) recorded a maser flux density of $1.2 times 10^{4}$ Jy. The superburst was investigated in the spectral, structural and temporal domains and its cause was determined to be an increase in maser path length generated by the superposition of multiple maser emitting regions aligning in the line of sight to the observer. This conclusion was based on the location of the bursting maser in the context of the star forming region, its complex structure, and its rapid onset and decay.
We report on annual parallax and proper motion observations of H2O masers in S235AB-MIR, which is a massive young stellar object in the Perseus Arm. Using multi-epoch VLBI astrometry we measured a parallax of pi = 0.63 +- 0.03 mas, corresponding to a trigonometric distance of D = 1.56+-0.09 kpc, and source proper motion of ( u alpha cos d , u d) = (0.79 +- 0.12, -2.41 +- 0.14) mas/yr. Water masers trace a jet of diameter 15 au which exhibits a definite radial velocity gradient perpendicular to its axis. 3D maser kinematics were well modelled by a rotating cylinder with physical parameters: v_out = 45+-2 km/s, v_rot = 22+-3 km/s, i = 12+-2 degrees, which are the outflow velocity, tangential rotation velocity and line-of-sight inclination, respectively. One maser feature exhibited steady acceleration which may be related to the jet rotation. During our 15 month VLBI programme there were three `maser burst events caught `in the act which were caused by the overlapping of masers along the line of sight.
We installed two sets of Astronomical Site Monitoring System(ASMS) at Lijiang Observatory(GMG), for the running of the 2.4-meter Lijiang optical telescope(LJT) and the 1.6-meter Multi-channel Photometric Survey Telescope (Mephisto). The Mephistro is under construction. ASMS has been running on robotic mode since 2017. The core instruments: Cloud Sensor, All-Sky Camera and Autonomous-DIMM that are developed by our group, together with the commercial Meteorological Station and Sky Quality Meter, are combined into the astronomical optical site monitoring system. The new Cloud Sensors Cloud-Clear Relationship is presented for the first time, which is used to calculate the All-Sky cloud cover. We designed the Autonomous-DIMM located on a tower, with the same height as LJT. The seeing data have been observed for a full year. ASMSs data for the year 2019 are also analysed in detail, which are valuable to observers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا