ﻻ يوجد ملخص باللغة العربية
The U.S. Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the U.S. coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within the U.S. National Virtual Observatory, and summarizes its main accomplishments. These accomplishments include the development of both scripting toolkits that allow scientists to incorporate VO data directly into their reduction and analysis environments and high-level science applications for data discovery, integration, analysis, and catalog cross-comparison. Working with the international community, and based on the experience from the software development, the VAO was a major contributor to international standards within the International Virtual Observatory Alliance. The VAO also demonstrated how an operational virtual observatory could be deployed, providing a robust operational environment in which VO services worldwide were routinely checked for aliveness and compliance with international standards. Finally, the VAO engaged in community outreach, developing a comprehensive web site with on-line tutorials, announcements, links to both U.S. and internationally developed tools and services, and exhibits and hands-on training .... All digital products of the VAO Project, including software, documentation, and tutorials, are stored in a repository for community access. The enduring legacy of the VAO is an increasing expectation that new telescopes and facilities incorporate VO capabilities during the design of their data management systems.
The time domain has been identified as one of the most important areas of astronomical research for the next decade. The Virtual Observatory is in the vanguard with dedicated tools and services that enable and facilitate the discovery, dissemination
In the era of big data astronomy, next generation telescopes and large sky surveys produce data sets at the TB or even PB level. Due to their large data volumes, these astronomical data sets are extremely difficult to transfer and analyze using perso
The VAO (Virtual Astronomical Observatory) Science Council (VAO-SC) met on July 27-28, 2011 at the Harvard-Smithsonian Center for Astrophysics in Cambridge MA, to review the VAO performance during its first year of operations. In this meeting the VAO
We installed two sets of Astronomical Site Monitoring System(ASMS) at Lijiang Observatory(GMG), for the running of the 2.4-meter Lijiang optical telescope(LJT) and the 1.6-meter Multi-channel Photometric Survey Telescope (Mephisto). The Mephistro is
INAF Trieste Astronomical Observatory (OATs) has a long tradition in information technology applied to Astronomical and Astrophysical use cases, particularly for what regards computing for data reduction, analysis and simulations; data and archives m