ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetocaloric effect and nature of magnetic transition in nanoscale Pr0.5Ca0.5MnO3

114   0   0.0 ( 0 )
 نشر من قبل Surya Narayana jammalamadaka
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Systematic measurements pertinent to the magnetocaloric effect and nature of magnetic transition around the transition temperature are performed in the 10 nm Pr0.5Ca0.5MnO3 nanoparticles (PCMO10) . Maxwell relation is employed to estimate the change in magnetic entropy. At Curie temperature TC, 83.5 K, the change in magnetic entropy discloses a typical variation with a value 0.57 J/kg K, and is found to be magnetic field dependent. From the area under the curve Delta S vs T, the refrigeration capacity is calculated at TC, 83.5 K and it is found to be 7.01 J/kg. Arrott plots infer that due to the competition between the ferromagnetic and anti ferromagnetic interactions, the magnetic phase transition in PCMO10 is broadly spread over both in temperature as well as in magnetic field coordinates. Upon tuning the particle size, size distribution, morphology, and relative fraction of magnetic phases, it may be possible to enhance the magnetocalorific effect further in PCMO10.


قيم البحث

اقرأ أيضاً

76 - Jinho Yang , Ki-seok Kim 2021
Emergent Lorentz symmetry and chiral anomaly are well known to play an essential role in anomalous transport phenomena of Weyl metals. In particular, the former causes a Berry-curvature induced orbital magnetic moment to modify the group velocity of Weyl electrons, and the latter results in the chiral magnetic effect to be responsible for a dissipationless longitudinal current channel of the bulk. In this study, we verify that intertwined these two effects can be measured in Shubnikov-de Haas (SdH) quantum oscillations, where a double-peak structure of the SdH oscillation appears to cause a kink in the Landau fan diagram. We examine three different cases which cover all possible experimental situations of external electric/magnetic fields and identify the experimental condition for the existence of the double-peak structure. We claim that interplay of the orbital magnetic moment and the chiral magnetic effect in SdH quantum oscillations is an interesting feature of the Weyl metal state.
255 - M. A. Cazalilla , H. Ochoa , 2013
We propose to engineer time-reversal-invariant topological insulators in two-dimensional (2D) crystals of transition metal dichalcogenides (TMDCs). We note that, at low doping, semiconducting TMDCs under shear strain will develop spin-polarized Landa u levels residing in different valleys. We argue that gaps between Landau levels in the range of $10-100$ Kelvin are within experimental reach. In addition, we point out that a superlattice arising from a Moire pattern can lead to topologically non-trivial subbands. As a result, the edge transport becomes quantized, which can be probed in multi-terminal devices made using strained 2D crystals and/or heterostructures. The strong $d$ character of valence and conduction bands may also allow for the investigation of the effects of electron correlations on the topological phases.
122 - V. Fleurov , K. Kikoin , 2012
Recent experiments [1] suggest that the ferromagnetism (FM) in GaAs: Mn is determined by the impurity band rather than holes in the valence band. We discuss here the physical mechanism of FM mediated by the carriers in impurity band, where the Mn d-l evel play a crucial role. The theory is based on the first principle approach.
We compute the valley/magnetic phase diagram of mono layers of transition metal dichalcogenides in the hole doped region where spin-orbit effects are particularly relevant. Taking into account the moderate to high local electron-electron interactions due to the presence of transition metal atoms, we show that the system is unstable to an itinerant ferromagnetic phase where all charge carriers are spin and valley polarized. This phase shows an anomalous charge Hall and anomalous spin-Hall response, and may thus be detected experimentally.
203 - He Zhao , Hong Li , Lianyang Dong 2021
The interplay of different electronic phases underlies the physics of unconventional superconductors. One of the most intriguing examples is a high-Tc superconductor FeTe1-xSex: it undergoes both a topological transition, linked to the electronic ban d inversion, and an electronic nematic phase transition, associated with rotation symmetry breaking, around the same critical composition xc where superconducting Tc peaks. At this regime, nematic fluctuations and symmetry-breaking strain could have an enormous impact, but this is yet to be fully explored. Using spectroscopic-imaging scanning tunneling microscopy, we study the electronic nematic transition in FeTe1-xSex as a function of composition. Near xc, we reveal the emergence of electronic nematicity in nanoscale regions. Interestingly, we discover that superconductivity is drastically suppressed in areas where static nematic order is the strongest. By analyzing atomic displacement in STM topographs, we find that small anisotropic strain can give rise to these strongly nematic localized regions. Our experiments reveal a tendency of FeTe1-xSex near x~0.45 to form puddles hosting static nematic order, suggestive of nematic fluctuations pinned by structural inhomogeneity, and demonstrate a pronounced effect of anisotropic strain on superconductivity in this regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا