ﻻ يوجد ملخص باللغة العربية
Emergent Lorentz symmetry and chiral anomaly are well known to play an essential role in anomalous transport phenomena of Weyl metals. In particular, the former causes a Berry-curvature induced orbital magnetic moment to modify the group velocity of Weyl electrons, and the latter results in the chiral magnetic effect to be responsible for a dissipationless longitudinal current channel of the bulk. In this study, we verify that intertwined these two effects can be measured in Shubnikov-de Haas (SdH) quantum oscillations, where a double-peak structure of the SdH oscillation appears to cause a kink in the Landau fan diagram. We examine three different cases which cover all possible experimental situations of external electric/magnetic fields and identify the experimental condition for the existence of the double-peak structure. We claim that interplay of the orbital magnetic moment and the chiral magnetic effect in SdH quantum oscillations is an interesting feature of the Weyl metal state.
We study Shubnikov-de Haas oscillations in a p-type WSe$_2$ monolayer under very high magnetic field. The oscillation pattern is complex due to a large spin and valley splitting, in the non-fully-resolved Landau level regime. Our experimental data ca
We report the electron doping in the surface vicinity of KTaO_3 by inducing oxygen-vacancies via Ar^+ -irradiation. The doped electrons have high mobility (> 10^4 cm^2/Vs) at low temperatures, and exhibit Shubnikov-de Haas oscillations with both two-
Quantum wire superlattices (1D) realized by controlled dislocation slipping in quantum well superlattices (2D) (atomic saw method) have already shown magnetophonon oscillations. This effect has been used to investigate the electronic properties of su
We report the observation of Shubnikov-de Haas oscillations in the underdoped cuprate superconductor YBa$_2$Cu$_4$O$_8$ (Y124). For field aligned along the c-axis, the frequency of the oscillations is $660pm 30$ T, which corresponds to $sim 2.4$ % of
The Haldane model on a honeycomb lattice is a paradigmatic example of a system featuring quantized Hall conductivity in the absence of an external magnetic field, that is, a quantum anomalous Hall effect. Recent theoretical work predicted that the an