ترغب بنشر مسار تعليمي؟ اضغط هنا

LOFAR insights into the epoch of reionization from the cross power spectrum of 21cm emission and galaxies

543   0   0.0 ( 0 )
 نشر من قبل Benedetta Ciardi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a combination of N-body simulations, semi-analytic models and radiative transfer calculations, we have estimated the theoretical cross power spectrum between galaxies and the 21cm emission from neutral hydrogen during the epoch of reionization. In accordance with previous studies, we find that the 21cm emission is initially correlated with halos on large scales (> 30 Mpc), anti-correlated on intermediate (~ 5 Mpc), and uncorrelated on small (< 3 Mpc) scales. This picture quickly changes as reionization proceeds and the two fields become anti-correlated on large scales. The normalization of the cross power spectrum can be used to set constraints on the average neutral fraction in the intergalactic medium and its shape can be a tool to study the topology of reionization. When we apply a drop-out technique to select galaxies and add to the 21cm signal the noise expected from the LOFAR telescope, we find that while the normalization of the cross power spectrum remains a useful tool for probing reionization, its shape becomes too noisy to be informative. On the other hand, for a Lyalpha Emitter (LAE) survey both the normalization and the shape of the cross power spectrum are suitable probes of reionization. A closer look at a specific planned LAE observing program using Subaru Hyper-Suprime Cam reveals concerns about the strength of the 21cm signal at the planned redshifts. If the ionized fraction at z ~ 7 is lower that the one estimated here, then using the cross power spectrum may be a useful exercise given that at higher redshifts and neutral fractions it is able to distinguish between two toy models with different topologies.



قيم البحث

اقرأ أيضاً

The 21cm-galaxy cross-power spectrum is expected to be one of the promising probes of the Epoch of Reionization (EoR), as it could offer information about the progress of reionization and the typical scale of ionized regions at different redshifts. W ith upcoming observations of 21cm emission from the EoR with the Low Frequency Array (LOFAR), and of high redshift Lyalpha emitters (LAEs) with Subarus Hyper Suprime Cam (HSC), we investigate the observability of such cross-power spectrum with these two instruments, which are both planning to observe the ELAIS-N1 field at z=6.6. In this paper we use N-body + radiative transfer (both for continuum and Lyalpha photons) simulations at redshift 6.68, 7.06 and 7.3 to compute the 3D theoretical 21cm-galaxy cross-power spectrum, as well as to predict the 2D 21cm-galaxy cross-power spectrum expected to be observed by LOFAR and HSC. Once noise and projection effects are accounted for, our predictions of the 21cm-galaxy cross-power spectrum show clear anti-correlation on scales larger than ~ 60 h$^{-1}$ Mpc (corresponding to k ~ 0.1 h Mpc$^{-1}$), with levels of significance p=0.04 at z=6.6 and p=0.048 at z=7.3. On smaller scales, instead, the signal is completely contaminated.
We present the first limits on the Epoch of Reionization (EoR) 21-cm HI power spectra, in the redshift range $z=7.9-10.6$, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total 13,h of data were used from observations centred on the North Celestial Pole (NCP). After subtraction of the sky model and the noise bias, we detect a non-zero $Delta^2_{rm I} = (56 pm 13 {rm mK})^2$ (1-$sigma$) excess variance and a best 2-$sigma$ upper limit of $Delta^2_{rm 21} < (79.6 {rm mK})^2$ at $k=0.053$$h$cMpc$^{-1}$ in the range $z=$9.6-10.6. The excess variance decreases when optimizing the smoothness of the direction- and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (i) residual side-lobe noise on calibration baselines, (ii) leverage due to non-linear effects, (iii) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.
The power spectrum of redshifted 21 cm emission brightness temperature fluctuations is a powerful probe of the Epoch of Reionization (EoR). However, bright foreground emission presents a significant impediment to its unbiased recovery from interferom etric data. We build on the Bayesian power spectral estimation methodology introduced in Sims et al. 2016 and demonstrate that incorporating a priori knowledge of the spectral structure of foregrounds in the large spectral scale component of the data model enables significantly improved modelling of the foregrounds without increasing the model complexity. We explore two astrophysically motivated parametrisations of the large spectral scale model: (i) a constant plus power law model of the form $q_{0}+q_{1}( u/ u_{0})^{b_{1}}$ for two values of $b_{1}$: $b_{1} = <beta>_mathrm{GDSE}$ and $b_{1} = <beta>_mathrm{EGS}$, the mean spectral indices of the Galactic diffuse synchrotron emission and extragalactic source foreground emission, respectively, and (ii) a constant plus double power law model of the form $q_{0}+q_{1}( u/ u_{0})^{b_{1}}+q_{2}( u/ u_{0})^{b_{2}}$ with $b_{1} = <beta>_mathrm{GDSE}$ and $b_{2} = <beta>_mathrm{EGS}$. We estimate the EoR power spectrum from simulated interferometric data consisting of an EoR signal, Galactic diffuse synchrotron emission, extragalactic sources and diffuse free-free emission from the Galaxy. We show that, by jointly estimating a model of the EoR signal with the constant plus double power law parametrisation of the large spectral scale model, unbiased estimates of the EoR power spectrum are recoverable on all spatial scales accessible in the data set, including on the large spatial scales that were found to be contaminated in earlier work.
Detection of the redshifted 21cm-line signal from neutral hydrogen in the intergalactic medium (IGM) during the Epoch of Reionization (EoR) is complicated by intense foregrounds such as galactic synchrotron and extragalactic radio galaxies. The 21cm- Lyman-$alpha$ emitter(LAE) cross-correlation is one of the tools available to reduce the foreground effects because the foreground emission from such radio sources is statistically independent of LAE distribution. LAE surveys during the EoR at redshifts $z=6.6$ and $7.3$ are ongoing by the Subaru Hyper Suprime-Cam (HSC). Additionally, Prime Focus Spectrograph (PFS) will provide precise redshift information of the LAEs discovered by the HSC survey. In this paper, we investigate the detectability of the 21cm signal with the 21cm-LAE cross-correlation by using our improved reionization simulations. We also focus on the error budget and evaluate it quantitatively in order to consider a strategy to improve the signal-to-noise ratio. In addition, we explore an expansion of the LAE survey to suggest optimal survey parameters and show a potential to measure a characteristic size of ionized bubbles via the turnover scale of the cross-power spectrum. As a result, we find that the Murchison Widefield Array (MWA) has ability to detect the cross-power spectrum signal on large scales by combining LAE Deep field survey of HSC. We also show that the sensitivity is improved dramatically at small scales by adding redshift information from the PFS measurements. The Square Kilometre Array (SKA) has a potential to measure the turnover scale with an accuracy of $6times10^{-3}~{rm Mpc^{-1}}$.
We discuss the 21cm power spectrum (PS) following the completion of reionization. In contrast to the reionization era, this PS is proportional to the PS of mass density fluctuations, with only a small modulation due to fluctuations in the ionization field on scales larger than the mean-free-path of ionizing photons. We derive the form of this modulation, and demonstrate that its effect on the 21cm PS will be smaller than 1% for physically plausible models of damped Ly-alpha systems. In contrast to the 21cm PS observed prior to reionization, in which HII regions dominate the ionization structure, the simplicity of the 21cm PS after reionization will enhance its utility as a cosmological probe by removing the need to separate the PS into physical and astrophysical components. As a demonstration, we consider the Alcock-Paczynski test and show that the next generation of low-frequency arrays could measure the angular distortion of the PS at the percent level for z~3-5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا