ﻻ يوجد ملخص باللغة العربية
The superconductor TmNi2B2C possesses a significant four-fold basal plane anisotropy, leading to a square Vortex Lattice (VL) at intermediate fields. However, unlike other members of the borocarbide superconductors, the anisotropy in TmNi2B2C appears to decrease with increasing field, evident by a reentrance of the square VL phase. We have used Small Angle Neutron Scattering measurements of the VL to study the field dependence of the anisotropy. Our results provide a direct, quantitative measurement of the decreasing anisotropy. We attribute this reduction of the basal plane anisotropy to the strong Pauli paramagnetic effects observed in TmNi2B2C and the resulting expansion of vortex cores near Hc2.
We report a high-pressure transport study of the upper-critical field, $B_{c2}(T)$, of the topological superconductor Sr$_{0.15}$Bi$_2$Se$_3$ ($T_c = 3.0$ K). $B_{c2}(T)$ was measured for magnetic fields directed along two orthogonal directions, $a$
We present a unifying picture of the magnetic in-plane anisotropies of two-dimensional superconductors based on transition metal dichalcogenides. The symmetry considerations are first applied to constrain the form of the conductivity tensor. We hence
The magnetic field distribution around the vortices in TmNi2B2C in the paramagnetic phase was studied experimentally as well as theoretically. The vortex form factor, measured by small-angle neutron scattering, is found to be field independent up to
Identifying the symmetry of the wave function describing the Cooper pairs is pivotal in understanding the origin of high-temperature superconductivity in iron-based superconductors. Despite nearly a decade of intense investigation, the answer to this
There are strong experimental evidences of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state formation in layered organic superconductors in parallel magnetic field. We study theoretically the interplay between the orbital effect and the FFLO modulat