ترغب بنشر مسار تعليمي؟ اضغط هنا

Cores and the Kinematics of Early-Type Galaxies

240   0   0.0 ( 0 )
 نشر من قبل Tod R. Lauer
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tod R. Lauer




اسأل ChatGPT حول البحث

I have combined the Emsellem et al. ATLAS3D rotation measures of a large sample of early-type galaxies with HST-based classifications of their central structure to characterize the rotation velocities of galaxies with cores. Core galaxies rotate slowly, while power-law galaxies (galaxies that lack cores) rotate rapidly, confirming the analysis of Faber et al. Significantly, the amplitude of rotation sharply discriminates between the two types in the -19 > Mv > -22 domain over which the two types coexist. The slow rotation in the small set of core galaxies with Mv > -20, in particular, brings them into concordance with the more massive core galaxies. The ATLAS3D fast-rotating and slow-rotating early-type galaxies are essentially the same as power-law and core galaxies, respectively, or the Kormendy & Bender two families of elliptical galaxies based on rotation, isophote shape, and central structure. The ATLAS3D fast rotators do include roughly half of the core galaxies, but their rotation-amplitudes are always at the lower boundary of that subset. Essentially all core galaxies have ATLAS3D rotation-amplitudes lambda_(R_e/2) <= 0.25, while all galaxies with lambda_(R_e/2) > 0.25 and figure eccentricity > 0.2 lack cores. Both figure rotation and the central structure of early-type galaxies should be used together to separate systems that appear to have formed from wet versus dry mergers.



قيم البحث

اقرأ أيضاً

We present stellar kinematics of 22 nearby early-type galaxies (ETGs), based on two-dimensional (2D) absorption line stellar spectroscopy out to ~2-4 R_e (effective radii), as part of the ongoing SLUGGS Survey. The galaxies span a factor of 20 in int rinsic luminosity, as well as a full range of environment and ETG morphology. Our data consist of good velocity resolution (sigma_inst ~ 25 km/s) integrated stellar-light spectra extracted from the individual slitlets of custom made Keck/DEIMOS slitmasks. We extract stellar kinematics measurements (V, sigma, h_3, and h_4) for each galaxy. Combining with literature values from smaller radii, we present 2D spatially resolved maps of the large-scale kinematic structure in each galaxy. We find that the kinematic homogeneity found inside 1 R_e often breaks down at larger radii, where a variety of kinematic behaviors are observed. While central slow rotators remain slowly rotating in their halos, central fast rotators show more diversity, ranging from rapidly increasing to rapidly declining specific angular momentum profiles in the outer regions. There are indications that the outer trends depend on morphological type, raising questions about the proposed unification of the elliptical and lenticular (S0) galaxy families in the ATLAS^3D survey. Several galaxies in our sample show multiple lines of evidence for distinct disk components embedded in more slowly rotating spheroids, and we suggest a joint photometric-kinematic approach for robust bulge-disk decomposition. Our observational results appear generally consistent with a picture of two-phase (in-situ plus accretion) galaxy formation.
268 - E. Toloba 2010
We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy population inhabiting clusters. We confirm that dEs are not dark matter dominated galaxies, at least up to the half-light radius. We also find that the observed galaxies in the outer parts of the cluster are mostly rotationally supported systems with disky morphological shapes. Rotationally supported dEs have rotation curves similar to those of star forming galaxies of similar luminosity and follow the Tully-Fisher relation. This is expected if dE galaxies are the descendant of low luminosity star forming systems which recently entered the cluster environment and lost their gas due to a ram pressure stripping event, quenching their star formation activity and transforming into quiescent systems, but conserving their angular momentum.
Spectroscopic observations of three lenticular (S0) galaxies (NGC 1167, NGC 4150, and NGC 6340) and one SBa galaxy (NGC 2273) have been taken with the 6-m telescope of the Special AstrophysicalObservatory of the Russian Academy of Sciences aimed to s tudy the structure and kinematic properties of early-type disk galaxies. The radial profiles of the stellar radial velocities and the velocity dispersion are measured. N-body simulations are used to construct dynamical models of galaxies containing a stellar disk, bulge, and halo. The masses of individual components are estimated formaximum-mass disk models. A comparison of models with estimated rotational velocities and the stellar velocity dispersion suggests that the stellar disks in lenticular galaxies are overheated; i.e., there is a significant excess velocity dispersion over the minimum level required to maintain the stability of the disk. This supports the hypothesis that the stellar disks of S0 galaxies were subject to strong gravitational perturbations. The relative thickness of the stellar disks in the S0 galaxies considered substantially exceed the typical disk thickness of spiral galaxies.
Recently, large samples of visually classified early-type galaxies (ETGs) containing dust have been identified using space-based infrared observations with the Herschel Space Telescope. The presence of large quantities of dust in massive ETGs is pecu liar as X-ray halos of these galaxies are expected to destroy dust in 10 Myr (or less). This has sparked a debate regarding the origin of the dust: is it internally produced by asymptotic giant branch (AGB) stars, or is it accreted externally through mergers? We examine the 2D stellar and ionised gas kinematics of dusty ETGs using IFS observations from the SAMI galaxy survey, and integrated star-formation rates, stellar masses, and dust masses from the GAMA survey. Only 8% (4/49) of visually-classified ETGs are kinematically consistent with being dispersion-supported systems. These dispersion-dominated galaxies exhibit discrepancies between stellar and ionised gas kinematics, either offsets in the kinematic position angle or large differences in the rotational velocity, and are outliers in star-formation rate at a fixed dust mass compared to normal star-forming galaxies. These properties are suggestive of recent merger activity. The remaining 90% of dusty ETGs have low velocity dispersions and/or large circular velocities, typical of rotation-dominated galaxies. These results, along with the general evidence of published works on X-ray emission in ETGs, suggest that they are unlikely to host hot, X-ray gas consistent with their low stellar mass when compared to dispersion-dominated galaxies. This means dust will be long lived and thus these galaxies do not require external scenarios for the origin of their dust content.
We have compared the halo kinematics traced by globular clusters (GCs) and planetary nebulae (PNe) for two elliptical galaxies in the Fornax and Virgo clusters NGC 1399 and NGC 4649, and for the merger remnant NGC 5128 (Centaurus A). We find differen ces in the rotational properties of the PN, red GC, and blue GC systems in all these three galaxies. NGC 1399 PNe and GCs show line of sight velocity distributions in specific regions that are significantly different, based on Kolmogorov-Smirnov tests. The PN system shows multi-spin components, with nearly opposite direction of rotation in the inner and the outer parts. The GCs velocity field is not point-symmetric in the outer regions of the galaxy, indicating that the system has not reached dynamical equilibrium yet. In NGC 4649 PNe, red and blue GCs have different rotation axes and rotational velocities. Finally, in NGC 5128 both PNe and GCs deviate from equilibrium in the outer regions of the galaxy, and in the inner regions the PN system is rotationally supported, whereas the GC system is dominated by velocity dispersion. The observed different kinematic properties, including deviations from point-symmetry, between PNe and GCs suggest that these systems are accreted at different times by the host galaxy, and the most recent accretion took place only few Gyr ago.We discuss two scenarios which may explain some of these differences: i) tidal stripping of loosely-bound GCs, and ii) multiple accretion of low luminosity and dwarf galaxies. Because these two mechanisms affect mostly the GC system, differences with the PNe kinematics can be expected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا