ترغب بنشر مسار تعليمي؟ اضغط هنا

Erosion of Copper Target Irradiated by Ion Beam

64   0   0.0 ( 0 )
 نشر من قبل Sergey Polosatkin
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Erosion of copper target irradiated by deuterium ion beam with ultimate fluence is studied. The target originally destined for neutron generation represents bulk copper substrate covered by 3-mum titanium layer. The target was irradiated by deuterium ion beam generated in Bayard-Alpert type ion source with energy of ions 17.5 keV/nuclear. Maximal fluence in the center of the target achieves 2.5x10^23atoms/cm^2. Measurements of the profile of irradiated target and estimation of fluence shows that physical sputtering is a dominating process that determines the target erosion Most interesting feature is growth of mum-size tadpole-shaped structures, localized in the cracks of the surface. RFA analysis of these structures showed extremely large (up to 60%at.) carbon content.

قيم البحث

اقرأ أيضاً

102 - Gennady Stupakov 2019
The fast beam-ion instability (FII) is caused by the interaction of an electron bunch train with the residual gas ions. The ion oscillations in the potential well of the electron beam have an inherent frequency spread due to the nonlinear profile of the potential. However, this frequency spread and associated with it Landau damping typically is not strong enough to suppress the instability. In this work, we develop a model of FII which takes into account the frequency spread in the electron beam due to the beam-beam interaction in an electron-ion collider. We show that with a large enough beam-beam parameter the fast ion instability can be suppressed. We estimate the strength of this effect for the parameters of the eRHIC electron-ion collider.
Moderate ion mobility provides a source of damping in the plasma wakefield acceleration, which may serve as an effective remedy against the transverse instability of the trailing bunch. Ion mobility in the fields of the driving and trailing bunches i s taken into account; the related effects are estimated for the FACET-II parameters.
Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of differ ent time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.
Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements done with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a Poly-methyl methacrylate target. Charged secondary particles, produced at 90$degree$ with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight has been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time of flight information, and their emission region has been reconstructed backtracking from the drift chamber to the target. Moreover a position scan of the target indicates that the reconstructed emission region follows the movement of the expected Bragg peak position. Exploting the reconstruction of the emission region, an accuracy on the Bragg peak determination in the submillimeter range has been obtained. The measured differential production rate for protons produced with $E^{rm Prod}_{rm kin} >$ 83 MeV and emitted at 90$degree$ with respect to the beam line is: $dN_{rm P}/(dN_{rm C}dOmega)(E^{rm Prod}_{rm kin} > 83 {rm ~MeV}, theta=90degree)= (2.69pm 0.08_{rm stat} pm 0.12_{rm sys})times 10^{-4} sr^{-1}$.
167 - Nobuhiro Shigyo 2012
Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretica l simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, proton-induced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30^{circ} and 5 m 90^{circ} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multi-particle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا