ترغب بنشر مسار تعليمي؟ اضغط هنا

WISE/NEOWISE Preliminary Analysis and Highlights of the 67P/Churyumov-Gerasimenko Near Nucleus Environs

137   0   0.0 ( 0 )
 نشر من قبل James Bauer
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On January 18-19 and June 28-29 of 2010, the Wide-field Infrared Survey Explorer (WISE) spacecraft imaged the Rosetta mission target, comet 67P/Churyumov-Gerasimenko. We present a preliminary analysis of the images, which provide a characterization of the dust environment at heliocentric distances similar to those planned for the initial spacecraft encounter, but on the outbound leg of its orbit rather than the inbound. Broad-band photometry yields low levels of CO2 production at a comet heliocentric distance of 3.32 AU and no detectable production at 4.18 AU. We find that at these heliocentric distances, large dust grains with mean grain diameters on the order of a millimeter or greater dominate the coma and evolve to populate the tail. This is further supported by broad-band photometry centered on the nucleus, which yield an estimated differential dust particle size distribution with a power law relation that is considerably shallower than average. We set a 3-sigma upper limit constraint on the albedo of the large-grain dust at <= 0.12. Our best estimate of the nucleus radius (1.82 +/- 0.20 km) and albedo (0.04 +/- 0.01) are in agreement with measurements previously reported in the literature.



قيم البحث

اقرأ أيضاً

We directly measure twenty overhanging cliffs on the surface of comet 67P/Churyumov-Gerasimenko extracted from the latest shape model and estimate the minimum tensile strengths needed to support them against collapse under the comets gravity. We find extremely low strengths of around one Pa or less (one to five Pa, when scaled to a metre length). The presence of eroded material at the base of most overhangs, as well as the observed collapse of two features and implied previous collapse of another, suggests that they are prone to failure and that true material strengths are close to these lower limits (although we only consider static stresses and not dynamic stress from, for example, cometary activity). Thus, a tensile strength of a few pascals is a good approximation for the tensile strength of 67Ps nucleus material, which is in agreement with previous work. We find no particular trends in overhang properties with size, over the $sim10-100$ m range studied here, or location on the nucleus. There are no obvious differences, in terms of strength, height or evidence of collapse, between the populations of overhangs on the two cometary lobes, suggesting that 67P is relatively homogenous in terms of tensile strength. Low material strengths are supportive of cometary formation as a primordial rubble pile or by collisional fragmentation of a small (tens of km) body.
The Rosetta space probe accompanied comet 67P/Churyumov-Gerasimenko for more than two years, obtaining an unprecedented amount of unique data of the comet nucleus and inner coma. This work focuses identifying the source regions of faint jets and outb ursts and on studying the spectrophotometric properties of some outbursts. We use observations acquired with the OSIRIS/NAC camera during July-October 2015, that is, close to perihelion. More than 200 jets of different intensities were identified directly on the nucleus. Some of the more intense outbursts appear spectrally bluer than the comet dark terrain in the vivible-to-near-infrared region. We attribute this spectral behavior to icy grains mixed with the ejected dust. Some of the jets have an extremely short lifetime. They appear on the cometary surface during the color sequence observations, and vanish in less than some few minutes after reaching their peak. We also report a resolved dust plume observed in May 2016 at a resolution of 55 cm/pixel, which allowed us to estimate an optical depth of $sim$0.65 and an ejected mass of $sim$ 2200 kg. We present the results on the location, duration, and colors of active sources on the nucleus of 67P from the medium-resolution (i.e., 6-10 m/pixel) images acquired close to perihelion passage. The observed jets are mainly located close to boundaries between different morphological regions. Jets depart not only from cliffs, but also from smooth and dust-covered areas, from fractures, pits, or cavities that cast shadows and favor the recondensation of volatiles. This study shows that faint jets or outbursts continuously contribute to the cometary activity close to perihelion passage, and that these events are triggered by illumination conditions. Faint jets or outbursts are not associated with a particular terrain type or morphology.
The OSIRIS/NAC camera onboard the Rosetta spacecraft acquired approximately 27000 images of comet 67PChuryumov-Gerasimenko at spatial scales down to a few centimeters. Numerous sequences of images separated by a few minutes suitable to stereo reconst ruction allowed producing anaglyphs. They offer three-dimensional views complementary to other technics as a tool to understand the topography of the nucleus. Each one is documented by a set of 17 parameters. Over 1820 anaglyphs are available on a dedicated website at https://rosetta-3dcomet.cnes.fr
136 - Paul D. Feldman 2015
Aims. The Alice far-ultraviolet spectrograph onboard Rosetta is designed to observe emissions from various atomic and molecular species from within the coma of comet 67P/ Churyumov-Gerasimenko and to determine their spatial distribution and evolution with time and heliocentric distance. Methods. Following orbit insertion in August 2014, Alice made observations of the inner coma above the limbs of the nucleus of the comet from cometocentric distances varying between 10 and 80 km. Depending on the position and orientation of the slit relative to the nucleus, emissions of atomic hydrogen and oxygen were initially detected. These emissions are spatially localized close to the nucleus and spatially variable with a strong enhancement above the comets neck at northern latitudes. Weaker emission from atomic carbon and CO were subsequently detected. Results. Analysis of the relative line intensities suggests photoelectron impact dissociation of H2O vapor as the source of the observed H I and O I emissions. The electrons are produced by photoionization of H2O. The observed C I emissions are also attributed to electron impact dissociation, of CO2, and their relative brightness to H I reflects the variation of CO2 to H2O column abundance in the coma.
We analysed layering-related linear features on the surface of comet 67P/Churyumov-Gerasimenko (67P) to determine the internal configuration of the layerings within the nucleus. We used high-resolution images from the OSIRIS Narrow Angle Camera onboa rd the Rosetta spacecraft, projected onto the SHAP7 shape model of the nucleus, to map 171 layering-related linear features which we believe to represent terrace margins and strata heads. From these curved lineaments, extending laterally to up to 1925 m, we extrapolated the subsurface layering planes and their normals. We furthermore fitted the lineaments with concentric ellipsoidal shells, which we compared to the established shell model based on planar terrace features. Our analysis confirms that the layerings on the comets two lobes are independent from each other. Our data is not compatible with 67Ps lobes representing fragments of a much larger layered body. The geometry we determined for the layerings on both lobes supports a concentrically layered, `onion-shell inner structure of the nucleus. For the big lobe, our results are in close agreement with the established model of a largely undisturbed, regular, concentric inner structure following a generally ellipsoidal configuration. For the small lobe, the parameters of our ellipsoidal shells differ significantly from the established model, suggesting that the internal structure of the small lobe cannot be unambiguously modelled by regular, concentric ellipsoids and could have suffered deformational or evolutional influences. A more complex model is required to represent the actual geometry of the layerings in the small lobe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا