The OSIRIS/NAC camera onboard the Rosetta spacecraft acquired approximately 27000 images of comet 67PChuryumov-Gerasimenko at spatial scales down to a few centimeters. Numerous sequences of images separated by a few minutes suitable to stereo reconstruction allowed producing anaglyphs. They offer three-dimensional views complementary to other technics as a tool to understand the topography of the nucleus. Each one is documented by a set of 17 parameters. Over 1820 anaglyphs are available on a dedicated website at https://rosetta-3dcomet.cnes.fr
Dust is an important constituent in cometary comae; its analysis is one of the major objectives of ESAs Rosetta mission to comet 67P/Churyumov-Gerasimenko (C-G). Several instruments aboard Rosetta are dedicated to studying various aspects of dust in
the cometary coma, all of which require a certain level of exposure to dust to achieve their goals. At the same time, impacts of dust particles can constitute a hazard to the spacecraft. To conciliate the demands of dust collection instruments and spacecraft safety, it is desirable to assess the dust environment in the coma even before the arrival of Rosetta. We describe the present status of modelling the dust coma of 67P/C-G and predict the speed and flux of dust in the coma, the dust fluence on a spacecraft along sample trajectories, and the radiation environment in the coma. The model will need to be refined when more details of the coma are revealed by observations. An overview of astronomical observations of 67P/C-G is given and model parameters are derived from these data where possible. For quantities not yet measured for 67P/C-G, we use values obtained for other comets. One of the most important and most controversial parameters is the dust mass distribution. We summarise the mass distribution functions derived from the in-situ measurements at comet 1P/Halley in 1986. For 67P/C-G, constraining the mass distribution is currently only possible by the analysis of astronomical images. We find that the results from such analyses are at present rather heterogeneous, and we identify a need to find a model that is reconcilable with all available observations.
Molecular oxygen has been detected in the coma of comet 67P/Churyumov-Gerasimenko with abundances in the 1-10% range by the ROSINA-DFMS instrument on board the Rosetta spacecraft. Here we find that the radiolysis of icy grains in low-density environm
ents such as the presolar cloud may induce the production of large amounts of molecular oxygen. We also show that molecular oxygen can be efficiently trapped in clathrates formed in the protosolar nebula, and that its incorporation as crystalline ice is highly implausible because this would imply much larger abundances of Ar and N2 than those observed in the coma. Assuming that radiolysis has been the only O2 production mechanism at work, we conclude that the formation of comet 67P/Churyumov-Gerasimenko is possible in a dense and early protosolar nebula in the framework of two extreme scenarios: (1) agglomeration from pristine amorphous icy grains/particles formed in ISM and (2) agglomeration from clathrates that formed during the disks cooling. The former scenario is found consistent with the strong correlation between O2 and H2O observed in 67P/C-Gs coma while the latter scenario requires that clathrates formed from ISM icy grains that crystallized when entering the protosolar nebula.
Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P/C-G) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comets nucleus. The aim of this work i
s to search for the presence of H$_2$O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting images of the bright spots which could be good candidates to search for H$_2$O ice, taken at high resolution by OSIRIS, we check for spectral cubes of the selected coordinates to identify these spots observed by VIRTIS. The selected OSIRIS images were processed with the OSIRIS standard pipeline and corrected for the illumination conditions for each pixel using the Lommel-Seeliger disk law. The spots with higher I/F were selected and then analysed spectrophotometrically and compared with the surrounding area. We selected 13 spots as good targets to be analysed by VIRTIS to search for the 2 micron absorption band of water ice in the VIRTIS spectral cubes. Out of the 13 selected bright spots, eight of them present positive H$_2$O ice detection on the VIRTIS data. A spectral analysis was performed and the approximate temperature of each spot was computed. The H$_2$O ice content was confirmed by modeling the spectra with mixing (areal and intimate) of H$_2$O ice and dark terrain, using Hapkes radiative transfer modeling. We also present a detailed analysis of the detected spots.
We present the results of the photometric and spectrophotometric properties of the 67P/Churyumov-Gerasimenko nucleus derived with the OSIRIS instrument during the closest fly-by over the comet, which took place on 14 th February 2015 at a distance of
{~} 6 km from the surface. Several images covering the 0{deg}-33{deg} phase angle range were acquired, and the spatial resolution achieved was 11 cm/pxl. The flown-by region is located on the big lobe of the comet, near the borders of the Ash, Apis and Imhotep regions. Our analysis shows that this region features local heterogeneities at the decimetre scale. We observed difference of reflectance up to 40{%} between bright spots and sombre regions, and spectral slope variations up to 50{%}. The spectral reddening effect observed globally on the comet surface by Fornasier et al. (2015) is also observed locally on this region, but with a less steep behaviour. We note that numerous metre-sized boulders, which exhibit a smaller opposition effect, also appear spectrally redder than their surroundings. In this region, we found no evidence linking observed bright spots to exposed water-ice-rich material. We fitted our dataset using the Hapke 2008 photometric model. The region overflown is globally as dark as the whole nucleus (geometric albedo of 6.8{%}) and it has a high porosity value in the uppermost-layers (86{%}). These results of the photometric analysis at a decimetre scale indicate that the photometric properties of the flown-by region are similar to those previously found for the whole nucleus.
We use the gravitational instability formation scenario of cometesimals to derive the aggregate size that can be released by the gas pressure from the nucleus of comet 67P/Churyumov-Gerasimenko for different heliocentric distances and different volat
ile ices. To derive the ejected aggregate sizes, we developed a model based on the assumption that the entire heat absorbed by the surface is consumed by the sublimation process of one volatile species. The calculations were performed for the three most prominent volatile materials in comets, namely, H_20 ice, CO_2 ice, and CO ice. We find that the size range of the dust aggregates able to escape from the nucleus into space widens when the comet approaches the Sun and narrows with increasing heliocentric distance, because the tensile strength of the aggregates decreases with increasing aggregate size. The activity of CO ice in comparison to H_20 ice is capable to detach aggregates smaller by approximately one order of magnitude from the surface. As a result of the higher sublimation rate of CO ice, larger aggregates are additionally able to escape from the gravity field of the nucleus. Our model can explain the large grains (ranging from 2 cm to 1 m in radius) in the inner coma of comet 67P/Churyumov-Gerasimenko that have been observed by the OSIRIS camera at heliocentric distances between 3.4 AU and 3.7 AU. Furthermore, the model predicts the release of decimeter-sized aggregates (trail particles) close to the heliocentric distance at which the gas-driven dust activity vanishes. However, the gas-driven dust activity cannot explain the presence of particles smaller than ~1 mm in the coma because the high tensile strength required to detach these particles from the surface cannot be provided by evaporation of volatile ices. These smaller particles can be produced for instance by spin-up and centrifugal mass loss of ejected larger aggregates.
Philippe Lamy
,Guillaume Faury
,David Romeuf
.
(2019)
.
"A catalog of stereo anaglyphs of the nucleus of comet 67P/Churyumov-Gerasimenko"
.
Philippe Lamy L
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا