ترغب بنشر مسار تعليمي؟ اضغط هنا

Many-body effects in iron pnictides and chalcogenides -- non-local vs dynamic origin of effective masses

244   0   0.0 ( 0 )
 نشر من قبل Jan M. Tomczak
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply the quasi-particle self-consistent GW (QSGW) approximation to some of the iron pnictide and chalcogenide superconductors. We compute Fermi surfaces and density of states, and find excellent agreement with experiment, substantially improving over standard band-structure methods. Analyzing the QSGW self-energy we discuss non-local and dynamic contributions to effective masses. We present evidence that the two contributions are mostly separable, since the quasi-particle weight is found to be essentially independent of momentum. The main effect of non locality is captured by the static but non-local QSGW effective potential. Moreover, these non-local self-energy corrections, absent in e.g. dynamical mean field theory (DMFT), can be relatively large. We show, on the other hand, that QSGW only partially accounts for dynamic renormalizations at low energies. These findings suggest that QSGW combined with DMFT will capture most of the many-body physics in the iron pnictides and chalcogenides.



قيم البحث

اقرأ أيضاً

Deviations of low-energy electronic structure of iron-based superconductors from density functional theory predictions have been parametrized in terms of band- and orbital-dependent mass renormalizations and energy shifts. The former have typically b een described in terms of a local self-energy within the framework of dynamical mean field theory, while the latter appears to require non-local effects due to interband scattering. By calculating the renormalized bandstructure in both random phase approximation (RPA) and the two-particle self-consistent approximation (TPSC), we show that correlations in pnictide systems like LaFeAsO and LiFeAs can be described rather well by a non-local self-energy. In particular, Fermi pocket shrinkage as seen in experiment occurs due to repulsive interband finite-energy scattering. For the canonical iron chalcogenide system FeSe in its bulk tetragonal phase, the situation is however more complex since even including momentum-dependent band renormalizations cannot explain experimental findings. We propose that the long-range Coulomb interaction may play an important role in band-structure renormalization in FeSe. We further compare our evaluations of non-local quasiparticle scattering lifetime within RPA and TPSC with experimental data for LiFeAs.
Motivated by the intriguing physics of quasi-2d fermionic systems, such as high-temperature superconducting oxides, layered transition metal chalcogenides or surface or interface systems, the development of many-body computational methods geared at i ncluding both local and non-local electronic correlations has become a rapidly evolving field. It has been realized, however, that the success of such methods can be hampered by the emergence of noncausal features in the effective or observable quantities involved. Here, we present a new approach of extending local many-body techniques such as dynamical mean field theory (DMFT) to nonlocal correlations, which preserves causality and has a physically intuitive interpretation. Our strategy has implications for the general class of DMFT-inspired many-body methods, and can be adapted to cluster, dual boson or dual fermion techniques with minimal effort.
The electronic structure of some europium chalcogenides and pnictides is calculated using the {it ab-initio} self-interaction corrected local-spin-density approximation (SIC-LSD). This approach allows both a localised description of the rare earth $f -$electrons and an itinerant description of $s$, $p$ and $d$-electrons. Localising different numbers of $f$-electrons on the rare earth atom corresponds to different nominal valencies, and the total energies can be compared, providing a first-principles description of valency. All the chalcogenides are found to be insulators in the ferromagnetic state and to have a divalent configuration. For the pnictides we find that EuN is half-metallic and the rest are normal metals. However a valence change occurs as we go down the pnictide column of the Periodic Table. EuN and EuP are trivalent, EuAs is only just trivalent and EuSb is found to be divalent. Our results suggest that these materials may find application in spintronic and spin filtering devices.
Impurity scattering is found to lead to quasi-one dimensional nanoscale modulation of the local density of states in the iron pnictides and chalcogenides. This `quasiparticle interference feature is remarkably similar across a wide variety of pnictid e and chalcogenide phases, suggesting a common origin. We show that a unified understanding of the experiments can be obtained by simply invoking a four-fold symmetry breaking $d_{xz}-d_{yz}$ orbital splitting, of a magnitude already suggested by the experiments. This can explain the one-dimensional characteristics in the local density of states observed in the orthorhombic nematic, tetragonal paramagnetic, as well as the spin-density wave and superconducting states in these materials.
138 - G. Lang , H.-J. Grafe , D. Paar 2009
The charge distribution in RFeAsO$_{1-x}$F$_x$ (R=La, Sm) iron pnictides is probed using As nuclear quadrupole resonance. Whereas undoped and optimally-doped or overdoped compounds feature a single charge environment, two charge environments are dete cted in the underdoped region. Spin-lattice relaxation measurements show their coexistence at the nanoscale. Together with the quantitative variations of the spectra with doping, they point to a local electronic order in the iron layers, where low- and high-doping-like regions would coexist. Implications for the interplay of static magnetism and superconductivity are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا