ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum phase transitions in the honeycomb-lattice Hubbard model

135   0   0.0 ( 0 )
 نشر من قبل Kazuhiro Seki
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum phase transitions in the Hubbard model on the honeycomb lattice are investigated in the variational cluster approximation. The critical interaction for the paramagnetic to antiferromagnetic phase transition is found to be in remarkable agreement with a recent large-scale quantum Monte Carlo simulation. Calculated staggered magnetization increases continuously with $U$ and thus we find the phase transition is of a second order. We also find that the semimetal-insulator transition occurs at infinitesimally small interaction and thus a paramagnetic insulating state appears in a wide interaction range. A crossover behavior of electrons from itinerant to localized character found in the calculated single-particle excitation spectra and short-range spin correlation functions indicates that an effective spin model for the paramagnetic insulating phase is far from a simple Heisenberg model with a nearest-neighbor exchange interaction.



قيم البحث

اقرأ أيضاً

We provide a unified, comprehensive treatment of all operators that contribute to the anti-ferromagnetic, ferromagnetic, and charge-density-wave structure factors and order parameters of the hexagonal Hubbard Model. We use the Hybrid Monte Carlo algo rithm to perform a systematic, carefully controlled analysis in the temporal Trotter error and of the thermodynamic limit. We expect our findings to improve the consistency of Monte Carlo determinations of critical exponents. We perform a data collapse analysis and determine the critical exponent $beta=0.898(37)$ for the semimetal-Mott insulator transition in the hexagonal Hubbard Model. Our methods are applicable to a wide range of lattice theories of strongly correlated electrons.
We take advantage of recent improvements in the grand canonical Hybrid Monte Carlo algorithm, to perform a precision study of the single-particle gap in the hexagonal Hubbard model, with on-site electron-electron interactions. After carefully control led analyses of the Trotter error, the thermodynamic limit, and finite-size scaling with inverse temperature, we find a critical coupling of $U_c/kappa=3.834(14)$ and the critical exponent $z u=1.185(43)$. Under the assumption that this corresponds to the expected anti-ferromagnetic Mott transition, we are also able to provide a preliminary estimate $beta=1.095(37)$ for the critical exponent of the order parameter. We consider our findings in view of the $SU(2)$ Gross-Neveu, or chiral Heisenberg, universality class. We also discuss the computational scaling of the Hybrid Monte Carlo algorithm, and possible extensions of our work to carbon nanotubes, fullerenes, and topological insulators.
We study the two-dimensional Kane-Mele-Hubbard model at half filling by means of quantum Monte Carlo simulations. We present a refined phase boundary for the quantum spin liquid. The topological insulator at finite Hubbard interaction strength is adi abatically connected to the groundstate of the Kane-Mele model. In the presence of spin-orbit coupling, magnetic order at large Hubbard U is restricted to the transverse direction. The transition from the topological band insulator to the antiferromagnetic Mott insulator is in the universality class of the three-dimensional XY model. The numerical data suggest that the spin liquid to topological insulator and spin liquid to Mott insulator transitions are both continuous.
In numerical simulations, spontaneously broken symmetry is often detected by computing two-point correlation functions of the appropriate local order parameter. This approach, however, computes the square of the local order parameter, and so when it is {it small}, very large system sizes at high precisions are required to obtain reliable results. Alternatively, one can pin the order by introducing a local symmetry breaking field, and then measure the induced local order parameter infinitely far from the pinning center. The method is tested here at length for the Hubbard model on honeycomb lattice, within the realm of the projective auxiliary field quantum Monte Carlo algorithm. With our enhanced resolution we find a direct and continuous quantum phase transition between the semi-metallic and the insulating antiferromagnetic states with increase of the interaction. The single particle gap in units of the Hubbard $U$ tracks the staggered magnetization. An excellent data collapse is obtained by finite size scaling, with the values of the critical exponents in accord with the Gross-Neveu universality class of the transition.
Based on tensor network simulations, we discuss the emergence of dynamical quantum phase transitions (DQPTs) in a half-filled one-dimensional lattice described by the extended Fermi-Hubbard model. Considering different initial states, namely noninter acting, metallic, insulating spin and charge density waves, we identify several types of sudden interaction quenches which lead to dynamical criticality. In different scenarios, clear connections between DQPTs and particular properties of the mean double occupation or charge imbalance can be established. Dynamical transitions resulting solely from high-frequency time-periodic modulation are also found, which are well described by a Floquet effective Hamiltonian. State-of-the-art cold-atom quantum simulators constitute ideal platforms to implement several reported DQPTs experimentally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا