ﻻ يوجد ملخص باللغة العربية
High degeneracy in ground states leads to the generation of exotic zero-energy modes, a representative example of which is the formation of molecular spin liquid-like fluctuations in a frustrated magnet. Here we present single-crystal inelastic neutron scattering results for the frustrated magnet MgCr$_2$O$_4$, which show that a common set of finite-energy molecular spin excitation modes is sustained in both the liquid-like paramagnetic phase and a magnetically ordered phase with an extremely complex structure. Based on this finding, we propose the concept of high degeneracy in excited states, which promotes local resonant elementary excitations. This concept is expected to have ramifications on our understanding of excitations in many complex systems, including not only spin but also atomic liquids, complex order systems, and amorphous systems.
The frustrated magnet SrDy$_2$O$_4$ exhibits a field-induced phase with a magnetization plateau at $1/3$ of the saturation value for magnetic fields applied along the $b$-axis. We report here a neutron scattering study of the nature and symmetry of t
We report single-crystal neutron diffraction studies on a spinel antiferromagnet GeCo$_2$O$_4$, which exhibits magnetic order with a trigonal propagation vector and tetragonal lattice expansion ($c/asimeq1.001$) below $T_{rm N}=21$ K. For this incons
Muon spin relaxation ($mu$SR) measurements were carried out on SrDy$_2$O$_4$, a frustrated magnet featuring short range magnetic correlations at low temperatures. Zero-field muon spin depolarization measurements demonstrate that fast magnetic fluctua
We determined the magnetic structure of CuCr$_2$O$_4$ using neutron diffraction and irreducible representation analysis. The measurements identified a new phase between 155 K and 125 K as nearly collinear magnetic ordering in the Cr pyrochlore lattic
The search for flat-band solid-state realizations is a crucial issue to verify or to challenge theoretical predictions for quantum many-body flat-band systems. For frustrated quantum magnets flat bands lead to various unconventional properties relate