ﻻ يوجد ملخص باللغة العربية
We study Anderson localization of single particles in continuous, correlated, one-dimensional disordered potentials. We show that tailored correlations can completely change the energy-dependence of the localization length. By considering two suitable models of disorder, we explicitly show that disorder correlations can lead to a nonmonotonic behavior of the localization length versus energy. Numerical calculations performed within the transfer-matrix approach and analytical calculations performed within the phase formalism up to order three show excellent agreement and demonstrate the effect. We finally show how the nonmonotonic behavior of the localization length with energy can be observed using expanding ultracold-atom gases.
We evaluate the localization length of the wave (or Schroedinger) equation in the presence of a disordered speckle potential. This is relevant for experiments on cold atoms in optical speckle potentials. We focus on the limit of large disorder, where
The localization of one-electron states in the large (but finite) disorder limit is investigated. The inverse participation number shows a non--monotonic behavior as a function of energy owing to anomalous behavior of few-site localization. The two-s
Exponential localization of wavefunctions in lattices, whether in real or synthetic dimensions, is a fundamental wave interference phenomenon. Localization of Bloch-type functions in space-periodic lattice, triggered by spatial disorder, is known as
The many-body localization transition for Heisenberg spin chain with a speckle disorder is studied. Such a model is equivalent to a system of spinless fermions in an optical lattice with an additional speckle field. Our numerical results show that th
We study quantum transport in anisotropic 3D disorder and show that non rotation invariant correlations can induce rich diffusion and localization properties. For instance, structured finite-range correlations can lead to the inversion of the transpo