ﻻ يوجد ملخص باللغة العربية
The many-body localization transition for Heisenberg spin chain with a speckle disorder is studied. Such a model is equivalent to a system of spinless fermions in an optical lattice with an additional speckle field. Our numerical results show that the many-body localization transition in speckle disorder falls within the same universality class as the transition in an uncorrelated random disorder, in contrast to the quasiperiodic potential typically studied in experiments. This hints at possibilities of experimental studies of the role of rare Griffiths regions and of the interplay of ergodic and localized grains at the many-body localization transition. Moreover, the speckle potential allows one to study the role of correlations in disorder on the transition. We study both spectral and dynamical properties of the system focusing on observables that are sensitive to the disorder type and its correlations. In particular, distributions of local imbalance at long times provide an experimentally available tool that reveals the presence of small ergodic grains even deep in the many-body localized phase in a correlated speckle disorder.
We demonstrate that many-body localization of two-dimensional weakly interacting bosons in disorder remains stable in the thermodynamic limit at sufficiently low temperatures. Highly energetic particles destroy the localized state only above a critic
We evaluate the localization length of the wave (or Schroedinger) equation in the presence of a disordered speckle potential. This is relevant for experiments on cold atoms in optical speckle potentials. We focus on the limit of large disorder, where
Sufficient disorder is believed to localize static and periodically-driven interacting chains. With quasiperiodic driving by $D$ incommensurate tones, the fate of this many-body localization (MBL) is unknown. We argue that randomly disordered MBL exi
We investigate the phase transition between an ergodic and a many-body localized phase in infinite anisotropic spin-$1/2$ Heisenberg chains with binary disorder. Starting from the Neel state, we analyze the decay of antiferromagnetic order $m_s(t)$ a
We propose a method for detecting many-body localization (MBL) in disordered spin systems. The method involves pulsed, coherent spin manipulations that probe the dephasing of a given spin due to its entanglement with a set of distant spins. It allows