ﻻ يوجد ملخص باللغة العربية
We investigate defenses against DNS cache poisoning focusing on mechanisms that can be readily deployed unilaterally by the resolving organisation, preferably in a single gateway or a proxy. DNS poisoning is (still) a major threat to Internet security; determined spoofing attackers are often able to circumvent currently deployed antidotes such as port randomisation. The adoption of DNSSEC, which would foil DNS poisoning, remains a long-term challenge. We discuss limitations of the prominent resolver-only defenses, mainly port and IP randomisation, 0x20 encoding and birthday protection. We then present two new (unilateral) defenses: the sandwich antidote and the NAT antidote. The defenses are simple, effective and efficient, and can be implemented in a gateway connecting the resolver to the Internet. The sandwich antidote is composed of two phases: poisoning-attack detection and then prevention. The NAT antidote adds entropy to DNS requests by switching the resolvers IP address to a random address (belonging to the same autonomous system). Finally, we show how to implement the birthday protection mechanism in the gateway, thus allowing to restrict the number of DNS requests with the same query to 1 even when the resolver does not support this.
In spite of the availability of DNSSEC, which protects against cache poisoning even by MitM attackers, many caching DNS resolvers still rely for their security against poisoning on merely validating that DNS responses contain some unpredictable value
The Domain Name System (DNS) was created to resolve the IP addresses of the web servers to easily remembered names. When it was initially created, security was not a major concern; nowadays, this lack of inherent security and trust has exposed the gl
Recommender systems play a crucial role in helping users to find their interested information in various web services such as Amazon, YouTube, and Google News. Various recommender systems, ranging from neighborhood-based, association-rule-based, matr
Virtually every connection to an Internet service is preceded by a DNS lookup which is performed without any traffic-level protection, thus enabling manipulation, redirection, surveillance, and censorship. To address these issues, large organizations
We demonstrate the first practical off-path time shifting attacks against NTP as well as against Man-in-the-Middle (MitM) secure Chronos-enhanced NTP. Our attacks exploit the insecurity of DNS allowing us to redirect the NTP clients to attacker contr