The shapes of invariant differential cross section for charged hadron production as function of hadrons transverse momentum and rapidity in ep collisions at HERA machine are considered. The particle spectra shapes observed in pp and gamma-gamma collisions before have shown very different properties. This difference could be directly measured in the mixed type collisions of photon and proton at HERA experiments.
We present a formalism which uses fluxes of equivalent photons including transverse momenta of the intermediate photons. The formalism reminds the familiar $k_t$-factorization approach used, e.g., to study the two-photon production of $cbar{c}$ or $b
bar{b}$ pairs. The results of the new method are compared with those obtained using the code LPAIR, and a good agreement is obtained. The inclusion of the photon transverse momenta is necessary in studies of correlation observables. We present distributions for the dimuon invariant mass, transverse momentum of the muon pair and relative azimuthal angle between muons separately for elastic-elastic, elastic-inelastic, inelastic-elastic and inelastic-inelastic mechanisms. For typical experimental cuts all mechanisms give similar contributions. The results are shown for different sets of cuts relevant for the LHC experiments. The cross sections in different regions of phase space depend on $F_2$ structure function in different regions of $x$ and $Q^2$. A comment on $F_2$ is made.
Recently, two photon PDF sets based on implementations of the LUX ansatz into the CT18 global analysis were released. In CT18lux, the photon PDF is calculated directly using the LUX master formula for all scales, $mu$. In an alternative realization,
CT18qed, the photon PDF is initialized at the starting scale, $mu_0$, using the LUX formulation and evolved to higher scales $mu(>mu_0)$ with a combined QED+QCD kernel at $mathcal{O}(alpha),~mathcal{O}(alphaalpha_s)$ and $mathcal{O}(alpha^2)$. In the small-$x$ region, the photon PDF uncertainty is mainly induced by the quark and gluon PDFs, through the perturbative DIS structure functions. In comparison, the large-$x$ photon uncertainty comes from various low-energy, nonperturbative contributions, including variations of the inelastic structure functions in the resonance and continuum regions, higher-twist and target-mass corrections, and elastic electromagnetic form factors of the proton. We take the production of doubly-charged Higgs pairs, $(H^{++}H^{--})$, as an example of scenarios beyond the Standard Model to illustrate the phenomenological implications of these photon PDFs at the LHC.
We present the first extraction of the transversity distribution in the framework of collinear factorization based on the global analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets and in proton-proton col
lisions with one transversely polarized proton. The extraction relies on the knowledge of di-hadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the chiral-odd transversity is extracted from a global analysis similar to what is usually done for the chiral-even spin-averaged and helicity distributions. The knowledge of transversity is important for, among other things, detecting possible signals of new physics in high-precision low-energy experiments.
We compute the leading order (LO) $qgto q gamma$ and next-to-leading order (NLO) $ggto q{bar q} gamma$ contributions to inclusive photon production in proton-proton (p+p) collisions at the LHC. These channels provide the dominant contribution at LO a
nd NLO for photon transverse momenta $k_{gammaperp}$ corresponding to momentum fractions of $xleq 0.01$ in the colliding protons. Our computations, performed in the dilute-dense framework of the Color Glass Condensate effective field theory (CGC EFT), show that the NLO contribution dominates at small-$x$ because it is sensitive to $k_perp$-dependent unintegrated gluon distributions in both of the protons. We predict a maximal $10%$ modification of the cross section at low $k_{gammaperp}$ as a direct consequence of the violation of $k_perp$-factorization. The coherence effects responsible for this modification are enhanced in nuclei and can be identified from inclusive photon measurements in proton-nucleus collisions. We provide numerical results for the isolated inclusive photon cross section for $k_{gammaperp}leq 20$ GeV in p+p collisions that can be tested in the future at the LHC.
Recently the TOTEM experiment at the LHC has released measurements at $sqrt{s} = 13$ TeV of the proton-proton total cross section, $sigma_{tot}$, and the ratio of the real to imaginary parts of the forward elastic amplitude, $rho$. Since then an inte
nse debate on the $C$-parity asymptotic nature of the scattering amplitude was initiated. We examine the proton-proton and the antiproton-proton forward data above 10 GeV in the context of an eikonal QCD-based model, where nonperturbative effects are readily included via a QCD effective charge. We show that, despite an overall satisfactory description of the forward data is obtained by a model in which the scattering amplitude is dominated by only crossing-even elastic terms, there is evidence that the introduction of a crossing-odd term may improve the agreement with the measurements of $rho$ at $sqrt{s} = 13$ TeV. In the Regge language the dominant even(odd)-under-crossing object is the so called Pomeron (Odderon).