ﻻ يوجد ملخص باللغة العربية
In the context of realistic calculations for strongly-correlated materials with $d$- or $f$-electrons the efficient computation of multi-orbital models is of paramount importance. Here we introduce a set of invariants for the SU(2)-symmetric Kanamori Hamiltonian which allows to massively speed up the calculation of the fermionic trace in hybridization-expansion continuous-time quantum Monte Carlo algorithms. As an application, we show that, exploiting this set of good quantum numbers, the study of the orbital-selective Mott-transition in systems with up to seven correlated orbitals becomes feasible.
We show that the two recently proposed methods to compute Renyi entanglement entropies in the realm of determinant quantum Monte Carlo methods for fermions are in principle equivalent, but differ in sampling strategies. The analogy allows to formulat
Over the last several years, a new generation of quantum simulations has greatly expanded our understanding of charge density wave phase transitions in Hamiltonians with coupling between local phonon modes and the on-site charge density. A quite diff
We present a non-iterative solver based on the Schur complement method for sparse linear systems of special form which appear in Quantum Monte-Carlo (QMC) simulations of strongly interacting fermions on the lattice. While the number of floating-point
Metallic quantum critical phenomena are believed to play a key role in many strongly correlated materials, including high temperature superconductors. Theoretically, the problem of quantum criticality in the presence of a Fermi surface has proven to
We provide a unified semiclassical theory for the conserved current of nonconserved quantities, and manifest it in two physical contexts: the spin current of Bloch electrons and the charge current of mean-field Bogoliubov quasiparticles. Several long