ترغب بنشر مسار تعليمي؟ اضغط هنا

The Milky Ways circular velocity curve between 4 and 14 kpc from APOGEE data

134   0   0.0 ( 0 )
 نشر من قبل Jo Bovy
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure the Milky Ways rotation curve over the Galactocentric range 4 kpc <~ R <~ 14 kpc from the first year of data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). We model the line-of-sight velocities of 3,365 stars in fourteen fields with b = 0 deg between 30 deg < l < 210 deg out to distances of 10 kpc using an axisymmetric kinematical model that includes a correction for the asymmetric drift of the warm tracer population (sigma_R ~ 35 km/s). We determine the local value of the circular velocity to be V_c(R_0) = 218 +/- 6 km/s and find that the rotation curve is approximately flat with a local derivative between -3.0 km/s/kpc and 0.4 km/s/kpc. We also measure the Suns position and velocity in the Galactocentric rest frame, finding the distance to the Galactic center to be 8 kpc < R_0 < 9 kpc, radial velocity V_{R,sun} = -10 +/- 1 km/s, and rotational velocity V_{phi,sun} = 242^{+10}_{-3} km/s, in good agreement with local measurements of the Suns radial velocity and with the observed proper motion of Sgr A*. We investigate various systematic uncertainties and find that these are limited to offsets at the percent level, ~2 km/s in V_c. Marginalizing over all the systematics that we consider, we find that V_c(R_0) < 235 km/s at >99% confidence. We find an offset between the Suns rotational velocity and the local circular velocity of 26 +/- 3 km/s, which is larger than the locally-measured solar motion of 12 km/s. This larger offset reconciles our value for V_c with recent claims that V_c >~ 240 km/s. Combining our results with other data, we find that the Milky Ways dark-halo mass within the virial radius is ~8x10^{11} M_sun.



قيم البحث

اقرأ أيضاً

We present a sample of 1148 ab-type RR Lyrae (RRLab) variables identified from Catalina Surveys Data Release 1, combined with SDSS DR8 and LAMOST DR4 spectral data. We firstly use a large sample of 860 Galactic halo RRLab stars and derive the circula r velocity distributions for the stellar halo. With the precise distances and carefully determined radial velocities (the center-of-mass radial velocities) by considering the pulsation of the RRLab stars in our sample, we can obtain a reliable and comparable stellar halo circular velocity curve. We take two different prescriptions for the velocity anisotropy parameter {beta} in the Jeans equation to study the circular velocity curve and mass profile. We test two different solar peculiar motions in our calculation. Our best result with the adopted solar peculiar motion 1 of (U, V, W) = (11.1, 12, 7.2) km/s is that the enclosed mass of the Milky Way within 50 kpc is (3.75 +/- 1.33) *10^11Msun based on beta = 0 and the circular velocity 180 +/- 31.92 (km/s) at 50 kpc. This result is consistent with dynamical model results, and it is also comparable to the previous similar works.
Data and analysis methodology used for the SDSS/APOGEE Data Releases 13 and 14 are described, highlighting differences from the DR12 analysis presented in Holtzman (2015). Some improvement in the handling of telluric absorption and persistence is dem onstrated. The derivation and calibration of stellar parameters, chemical abundances, and respective uncertainties are described, along with the ranges over which calibration was performed. Some known issues with the public data related to the calibration of the effective temperatures (DR13), surface gravity (DR13 and DR14), and C and N abundances for dwarfs (DR13 and DR14) are highlighted. We discuss how results from a data-driven technique, The Cannon (Casey 2016), are included in DR14, and compare those with results from the APOGEE Stellar Parameters and Chemical Abundances Pipeline (ASPCAP). We describe how using The Cannon in a mode that restricts the abundance analysis of each element to regions of the spectrum with known features from that element leads to Cannon abundances can lead to significantly different results for some elements than when all regions of the spectrum are used to derive abundances.
351 - X.-X. Xue , H.-W. Rix , G. Zhao 2008
We derive new constraints on the mass of the Milky Ways dark matter halo, based on a set of halo stars from SDSS as kinematic tracers. Our sample comprises 2401 rigorously selected Blue Horizontal-Branch (BHB) halo stars drawn from SDSS DR-6. To inte rpret these distributions, we compare them to matched mock observations drawn from two different cosmological galaxy formation simulations designed to resemble the Milky Way, which we presume to have an appropriate orbital distribution of halo stars. We then determine which value of $rm V_{cir}(r)$ brings the observed distribution into agreement with the corresponding distributions from the simulations. This procedure results in an estimate of the Milky Ways circular velocity curve to $sim 60$ kpc, which is found to be slightly falling from the adopted value of $rm 220 km s^{-1}$ at the Suns location, and implies M$(<60 rm kpc) = 4.0pm 0.7times 10^{11}$M$_odot$. The radial dependence of $rm V_{cir}(r)$, derived in statistically independent bins, is found to be consistent with the expectations from an NFW dark matter halo with the established stellar mass components at its center. If we assume an NFW halo profile of characteristic concentration holds, we can use the observations to estimate the virial mass of the Milky Ways dark matter halo, M$_{rm vir}=1.0^{+0.3}_{-0.2} times 10^{12}$M$_odot$, which is lower than many previous estimates. This estimate implies that nearly 40% of the baryons within the virial radius of the Milky Ways dark matter halo reside in the stellar components of our Galaxy. A value for M$_{rm vir}$ of only $sim 1times10^{12}$M$_odot$ also (re-)opens the question of whether all of the Milky Ways satellite galaxies are on bound orbits.
98 - Till Sawala 2016
The predicted abundance and properties of the low-mass substructures embedded inside larger dark matter haloes differ sharply among alternative dark matter models. Too small to host galaxies themselves, these subhaloes may still be detected via gravi tational lensing, or via perturbations of the Milky Ways globular cluster streams and its stellar disk. Here we use the Apostle cosmological simulations to predict the abundance and the spatial and velocity distributions of subhaloes in the range 10^6.5-10^8.5 solar masses inside haloes of mass ~ 10^12 solar masses in LCDM. Although these subhaloes are themselves devoid of baryons, we find that baryonic effects are important. Compared to corresponding dark matter only simulations, the loss of baryons from subhaloes and stronger tidal disruption due to the presence of baryons near the centre of the main halo, reduce the number of subhaloes by ~ 1/4 to 1/2, independently of subhalo mass, but increasingly towards the host halo centre. We also find that subhaloes have non-Maxwellian orbital velocity distributions, with centrally rising velocity anisotropy and positive velocity bias which reduces the number of low-velocity subhaloes, particularly near the halo centre. We parameterise the predicted population of subhaloes in terms of mass, galactocentric distance, and velocities. We discuss implications of our results for the prospects of detecting dark matter substructures and for possible inferences about the nature of dark matter.
We investigate the inner regions of the Milky Way with a sample of unprecedented size and coverage thanks to APOGEE DR16 and {it Gaia} DR3 data. Our inner Galactic sample has more than 26,000 stars within $|X_{rm Gal}| <5$ kpc, $|Y_{rm Gal}| <3.5$ kp c, $|Z_{rm Gal}| <1$ kpc, and we also make the analysis for a foreground-cleaned sub-sample of 8,000 stars more representative of the bulge-bar populations. The inner Galaxy shows a clear chemical discontinuity in key abundance ratios [$alpha$/Fe], [C/N], and [Mn/O], probing different enrichment timescales, which suggests a star formation gap (quenching) between the high- and low-$alpha$ populations. For the first time, we are able to fully characterize the different populations co-existing in the innermost regions of the Galaxy via joint analysis of the distributions of rotational velocities, metallicities, orbital parameters and chemical abundances. The chemo-kinematic analysis reveals the presence of the bar; of an inner thin disk; of a thick disk, and of a broad metallicity population, with a large velocity dispersion, indicative of a pressure supported component. We find and characterize chemically and kinematically a group of counter-rotating stars, which could be the result of a gas-rich merger event or just the result of clumpy star formation during the earliest phases of the early disk, which migrated into the bulge. Finally, based on the 6D information we assign stars a probability value of being on a bar orbit and find that most of the stars with large bar orbit probabilities come from the innermost 3 kpcs. Even stars with a high probability of belonging to the bar show the chemical bimodality in the [$alpha$/Fe] vs. [Fe/H] diagram. This suggests bar trapping to be an efficient mechanism, explaining why stars on bar orbits do not show a significant distinct chemical abundance ratio signature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا