ﻻ يوجد ملخص باللغة العربية
In this article we perform a second order perturbation analysis of the gravitational metric theory of gravity $ f(chi) = chi^{3/2} $ developed by Bernal et al. (2011). We show that the theory accounts in detail for two observational facts: (1) the phenomenology of flattened rotation curves associated to the Tully-Fisher relation observed in spiral galaxies, and (2) the details of observations of gravitational lensing in galaxies and groups of galaxies, without the need of any dark matter. We show how all dynamical observations on flat rotation curves and gravitational lensing can be synthesised in terms of the empirically required metric coefficients of any metric theory of gravity. We construct the corresponding metric components for the theory presented at second order in perturbation, which are shown to be perfectly compatible with the empirically derived ones. It is also shown that under the theory being presented, in order to obtain a complete full agreement with the observational results, a specific signature of Riemanns tensor has to be chosen. This signature corresponds to the one most widely used nowadays in relativity theory. Also, a computational program, the MEXICAS (Metric EXtended-gravity Incorporated through a Computer Algebraic System) code, developed for its usage in the Computer Algebraic System (CAS) Maxima for working out perturbations on a metric theory of gravity, is presented and made publicly available.
We discuss the phenomenology of gravitational lensing in the purely metric $fleft(chiright)$ gravity, an $f(R)$ gravity where the action of the gravitational field depends on the source mass. We focus on the strong lensing regime in galaxy-galaxy len
Introducing a fundamental constant of nature with dimensions of acceleration into the theory of gravity makes it possible to extend gravity in a very consistent manner. At the non-relativistic level a MOND-like theory with a modification in the force
A shaped doublet pump pulse is proposed for simultaneous octave-spanning soliton Kerr frequency comb generation and second-harmonic conversion in a single microresonator. The temporal soliton in the cavity is trapped atop a doublet pulse pedestal, re
Based on thermodynamics, we discuss the galactic clustering of expanding Universe by assuming the gravitational interaction through the modified Newtons potential given by $f(R)$ gravity. We compute the corrected $N$-particle partition function analy
In this paper we analyze the implications of gravitational waves (GWs) as standard sirens on the modified gravity models by using the third-generation gravitational wave detector, i.e., the Einstein Telescope. Two viable models in $f(R)$ theories wit