ﻻ يوجد ملخص باللغة العربية
In this paper we analyze the implications of gravitational waves (GWs) as standard sirens on the modified gravity models by using the third-generation gravitational wave detector, i.e., the Einstein Telescope. Two viable models in $f(R)$ theories within the Palatini formalism are considered in our analysis ($f_{1}(mathcal{R})=mathcal{R}-frac{beta}{mathcal{R}^{n}}$ and $f_{2}(mathcal{R})=mathcal{R}+alphaln{mathcal{R}}-beta$), with the combination of simulated GW data and the latest electromagnetic (EM) observational data (including the recently released Pantheon type Ia supernovae sample, the cosmic chronometer data, and baryon acoustic oscillation distance measurements). Our analysis reveals that the standard sirens GWs, which provide an independent and complementary alternative to current experiments, could effectively eliminate the degeneracies among parameters in the two modified gravity models. In addition, we thoroughly investigate the nature of geometrical dark energy in the modified gravity theories with the assistance of $Om(z)$ and statefinder diagnostic analysis. The present analysis makes it clear-cut that the simplest cosmological constant model is still the most preferred by the current data. However, the combination of future naturally improved GW data most recent EM observations will reveal the consistency or acknowledge the tension between the $Lambda$CDM model and modified gravity theories.
We present the first analysis of extended stellar kinematics of elliptical galaxies where a Yukawa--like correction to the Newtonian gravitational potential derived from f(R)-gravity is considered as an alternative to dark matter. In this framework,
Based on thermodynamics, we discuss the galactic clustering of expanding Universe by assuming the gravitational interaction through the modified Newtons potential given by $f(R)$ gravity. We compute the corrected $N$-particle partition function analy
We test Einstein gravity using cosmological observations of both expansion and structure growth, including the latest data from supernovae (Union2.1), CMB (WMAP7), weak lensing (CFHTLS) and peculiar velocity of galaxies (WiggleZ). We fit modified gra
In this work, we use the simulated gravitational wave (GW) standard siren data from the future observation of the Einstein Telescope (ET) to constrain various dark energy cosmological models, including the $Lambda$CDM, $w$CDM, CPL, $alpha$DE, GCG, an
We study the holographic dark energy (HDE) model by using the future gravitational wave (GW) standard siren data observed from the Einstein Telescope (ET) in this work. We simulate 1000 GW standard siren data based on a 10-year observation of the ET