ترغب بنشر مسار تعليمي؟ اضغط هنا

Formes modulaires de Hilbert modulo p et valeurs dextensions galoisiennes

180   0   0.0 ( 0 )
 نشر من قبل Fred Diamond
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let F be a totally real field, v an unramified place of F dividing p and rho a continuous irreducible two-dimensional mod p representation of G_F such that the restriction of rho to G_{F_v} is reducible and sufficiently generic. If rho is modular (and satisfies some weak technical assumptions), we show how to recover the corresponding extension between the two characters of G_{F_v} in terms of the action of GL_2(F_v) on the cohomology mod p.



قيم البحث

اقرأ أيضاً

Let $X$ be a real-analytic manifold and $gcolon Xto{mathbf R}^n$ a proper triangulable subanalytic map. Given a subanalytic $r$-form $omega$ on $X$ whose pull-back to every non singular fiber of $g$ is exact, we show tha $omega$ has a relative primit ive: there is a subanalytic $(r-1)$-form $Omega$ such that $dgLambda (omega-dOmega)=0$. The proof uses a subanalytic triangulation to translate the problem in terms of relative Whitney forms associated to prisms. Using the combinatorics of Whitney forms, we show that the result ultimately follows from the subanaliticity of solutions of a special linear partial differential equation. The work was inspired by a question of Franc{c}ois Treves.
We describe the behaviour of the rank of the Mordell-Weil group of the Picard variety of the generic fibre of a fibration in terms of local contributions given by averaging traces of Frobenius acting on the fibres. The results give a reinterpretation of Tates conjecture (for divisors) and generalises previous results of Nagao, Rosen-Silverman and the authors.
We describe a conjectural construction (in the spirit of Hilberts 12th problem) of units in abelian extensions of certain base fields which are neither totally real nor CM. These base fields are quadratic extensions with exactly one complex place of a totally real number field F, and are referred to as Almost Totally real (ATR) extensions. Our construction involves certain null-homologous topological cycles on the Hilbert modular variety attached to F. The special units are the images of these cycles under a map defined by integration of weight two Eisenstein series on GL_2(F). This map is formally analogous to the higher Abel-Jacobi maps that arise in the theory of algebraic cycles. We show that our conjecture is compatible with Starks conjecture for ATR extensions; it is, however, a genuine strengthening of Starks conjecture in this context since it gives an analytic formula for the arguments of the Stark units and not just for their absolute values. The last section provides numerical evidences for our conjecture.
We give a new definition, simpler but equivalent, of the abelian category of Banach-Colmez spaces introduced by Colmez, and we explain the precise relationship with the category of coherent sheaves on the Fargues-Fontaine curve. One goes from one cat egory to the other by changing the t-structure on the derived category. Along the way, we obtain a description of the pro-etale cohomology of the open disk and the affine space, of independent interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا