ترغب بنشر مسار تعليمي؟ اضغط هنا

On angular momentum and magnetic moment in many-electron system

46   0   0.0 ( 0 )
 نشر من قبل Yuri Kornyushin V
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yuri Kornyushin




اسأل ChatGPT حول البحث

Simple explanation of coexistence of zero angular momentum and non-zero magnetic moment in many-electron system is discussed in this short note from the point of view of statistical physics

قيم البحث

اقرأ أيضاً

We analyze the laws of conservation of momentum and angular momentum in classical electrodynamics of material media with bound charges, and explore the possibility to describe the properties of such media via a discrete set of point-like charges of z ero size (as imposed by special relativity), and via continuous charge/current distributions. This way we put a question: do we have to recognize the infinite fields at the location of elementary charges as the essential physical requirement, or such infinite fields can be ignored via introduction of continuous charge distribution? In order to answer this question, we consider the interaction of a homogeneously charged insulating plate with a compact magnetic dipole, moving along the plate. We arrive at the apparent violation of the angular momentum conservation law and show that this law is re-covered, when the electric field at the location of each elementary charge of the plate is taken infinite. This result signifies that the description of electromagnetic properties of material media via the continuous charge and current distributions is not a universal approximation, and at the fundamental level, we have to deal with a system of elementary discrete charges of zero size, at least in the analysis of laws of conservation of momentum and angular momentum.
We propose a highly efficient atomically-resolved mode of electron magnetic chiral dichroism. This method exploits the recently introduced orbital angular momentum spectrometer to analyze the inelastically scattered electrons allowing for simultaneou s dispersion in both energy and angular momentum. The technique offers several advantages over previous formulations of electron magnetic chiral dichroism as it requires much simpler experimental conditions in terms of specimen orientation and thickness. A novel simulation algorithm, based on the multislice description of the beam propagation, is used to anticipate the advantages of the new approach over current electron magnetic chiral dichroism implementations. Numerical calculations confirm an increased magnetic signal to noise ratio with in plane atomic resolution.
69 - Davor Palle 2016
The anomalous magnetic moment of the muon is an important observable that tests radiative corrections of all three observed local gauge forces: electromagnetic, weak and strong interactions. High precision measurements reveal some discrepancy with th e most accurate theoretical evaluations of the anomalous magnetic moment. We show in this note that the UV finite theory cannot resolve this discrepancy. We believe that more reliable estimate of the nonperturbative hadronic contribution and the new measurements can resolve the problem.
Though the Boltzmann-Gibbs framework of equilibrium statistical mechanics has been successful in many arenas, it is clearly inadequate for describing many interesting natural phenomena driven far from equilibrium. The simplest step towards that goal is a better understanding of nonequilibrium steady-states (NESS). Here we focus on one of the distinctive features of NESS, persistent probability currents, and their manifestations in our climate system. We consider the natural variability of the steady-state climate system, which can be approximated as a NESS. These currents must form closed loops, which are odd under time reversal, providing the crucial difference between systems in thermal equilibrium and NESS. Seeking manifestations of such current loops leads us naturally to the notion of probability angular momentum and oscillations in the space of observables. Specifically, we will relate this concept to the asymmetric part of certain time-dependent correlation functions. Applying this approach, we propose that these current loops give rise to preferred spatio-temporal patterns of natural climate variability that take the form of climate oscillations such as the El-Ni~{n}o Southern Oscillation (ENSO) and the Madden-Julien Oscillation (MJO). In the space of climate indices, we observe persistent currents and define a new diagnostic for these currents: the probability angular momentum. Using the observed climatic time series of ENSO and MJO, we compute both the averages and the distributions of the probability angular momentum. These results are in good agreement with the analysis from a linear Gaussian model. We propose that, in addition to being a new quantification of climate oscillations across models and observations, the probability angular momentum provides a meaningful characterization for all statistical systems in NESS.
Quantum complementarity states that particles, e.g. electrons, can exhibit wave-like properties such as diffraction and interference upon propagation. textit{Electron waves} defined by a helical wavefront are referred to as twisted electrons~cite{uch ida:10,verbeeck:10,mcmorran:11}. These electrons are also characterised by a quantized and unbounded magnetic dipole moment parallel to their propagation direction, as they possess a net charge of $-|e|$~cite{bliokh:07}. When interacting with magnetic materials, the wavefunctions of twisted electrons are inherently modified~cite{lloyd:12b,schattschneider:14a,asenjo:14}. Such variations therefore motivate the need to analyze electron wavefunctions, especially their wavefronts, in order to obtain information regarding the materials structure~cite{harris:15}. Here, we propose, design, and demonstrate the performance of a device for measuring an electrons azimuthal wavefunction, i.e. its orbital angular momentum (OAM) content. Our device consists of nanoscale holograms designed to introduce astigmatism onto the electron wavefunctions and spatially separate its phase components. We sort pure and superposition OAM states of electrons ranging within OAM values of $-10$ and $10$. We employ the device to analyze the OAM spectrum of electrons having been affected by a micron-scale magnetic dipole, thus establishing that, with a midfield optical configuration, our sorter can be an instrument for nano-scale magnetic spectroscopy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا