ﻻ يوجد ملخص باللغة العربية
The anomalous magnetic moment of the muon is an important observable that tests radiative corrections of all three observed local gauge forces: electromagnetic, weak and strong interactions. High precision measurements reveal some discrepancy with the most accurate theoretical evaluations of the anomalous magnetic moment. We show in this note that the UV finite theory cannot resolve this discrepancy. We believe that more reliable estimate of the nonperturbative hadronic contribution and the new measurements can resolve the problem.
A new QCD sum rule determination of the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, $a_{mu}^{rm hvp}$, is proposed. This approach combines data on $e^{+}e^{-}$ annihilation into hadrons, pertu
We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $alpha$ and is broken down into pure QED, electroweak, and hadro
The Goldberger-Treiman relation $M=2pi/sqrt{3}f^{rm cl}_pi$ where $M$ is the constituent quark mass in the chiral limit (cl) and $f^{rm cl}_pi$ the pion decay constant in the chiral limit predicts constituent quark masses of $m_u=328.8pm 1.1$ MeV and
The latest measurement of the muon anomalous magnetic moment $a^{}_{mu} equiv (g^{}_mu - 2)/2$ at the Fermi Laboratory has found a $4.2,sigma$ discrepancy with the theoretical prediction of the Standard Model (SM). Motivated by this exciting progress
We compute the leading hadronic contribution to the anomalous magnetic moment of the muon a_mu^HLO using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. By applying partially twisted boundary conditions we are able to impr