ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous hysteresis as an evidence for a magnetic field-induced chiral superconducting state in LiFeAs

298   0   0.0 ( 0 )
 نشر من قبل Luis Balicas Dr
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetometry measurements in high quality LiFeAs single-crystals reveal a change in the sign of the magnetic hysteresis in the vicinity of the upper critical field $H_{c2}$, from a clear diamagnetic response dominated by the pinning of vortices, to a considerably smaller net hysteretic response of opposite sign, which emph{disappears} at $H_{c2}$. If the diamagnetic response at high fields results from pinned vortices and associated screening super-currents, this sign change must result from currents circulating in the opposite sense, which give rise to a small field-dependent magnetic moment emph{below} $H_{c2}$. This behavior seems to be extremely sensitive to the sample quality or stoichiometry, as we have observed it only in a few fresh crystals, which also display the de Haas van Alphen-effect. We provide arguments against the surface superconductivity, the flux compression, and the random $pi$ junction scenarios, which have been previously put forward to explain a paramagnetic Meissner effect, below the lower critical field $H_{c1}$. The observed anomalous hysteresis at high fields will be compatible with the existence of chiral gap wave-functions, which possess a field dependent magnetic moment. Within a Landau-Ginzburg framework, we demonstrate how a $(d_{x^2 - y^2} + id_{xy})$ or a $(p_x+ip_y)$ chiral superconducting component can be stabilized in the mixed state of $s_{pm}$ superconductor, due to the combined effects of the magnetic field and the presence of competing pairing channels. The realization of a particular chiral pairing depends on the microscopic details of the strengths of the competing pairing channels.



قيم البحث

اقرأ أيضاً

Transverse-field muon-spin rotation measurements performed on two samples of LiFeAs demonstrate that the superfluid stiffness of the superconducting condensate in relation to its superconducting transition temperature is enhanced compared to other pn ictide superconductors. Evidence is seen for a field-induced magnetic state in a sample with a significantly suppressed superconducting transition temperature. The results in this system highlight the role of direct Fe-Fe interactions in frustrating pairing mediated by antiferromagnetic fluctuations and suggest that, in common with other pnictide superconductors, the system is close to a magnetic instability.
The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated. Important improvements with respect to previous work are: (1) the energy of the external magnetic field, as deformed by the presence of sup erconducting domains, is calculated in the same way for three different topologies, and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields normal (superconducting) tubes are found, while for intermediate fields parallel domains have a lower energy. The range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is more in-plane oriented.
Superconductivity induced by a magnetic field near metamagnetism is a striking manifestation of magnetically-mediated superconducting pairing. After being observed in itinerant ferromagnets, this phenomenon was recently reported in the orthorhombic p aramagnet UTe$_2$. Under a magnetic field applied along the hard magnetization axis b, superconductivity is reinforced on approaching metamagnetism at $mu_0H_m$ = 35 T, but it abruptly disappears beyond $H_m$. On the contrary, field-induced superconductivity was reported beyond $mu_0H_m$ = 40-50 T in a magnetic field tilted by $simeq25-30deg$ from b in the (b,c) plane. Here we explore the phase diagram of UTe2 under these two magnetic-field directions. Zero-resistance measurements permit to confirm unambiguously that superconductivity is established beyond Hm in the tilted-field direction. While superconductivity is locked exactly at fields either smaller (for a H || b), or larger (for H tilted by $simeq27deg$ from b to c), than Hm, the variations of the Fermi-liquid coefficient in the electrical resistivity and of the residual resistivity are surprisingly similar for the two field directions. The resemblance of the normal states for the two field directions puts constraints for theoretical models of superconductivity and implies that some subtle ingredients must be in play.
The antiferromagnet CaFe$_2$As$_2$ does not become superconducting when subject to ideal hydrostatic pressure conditions, where crystallographic and magnetic states also are well defined. By measuring electrical resistivity and magnetic susceptibilit y under quasi-hydrostatic pressure, however, we find that a substantial volume fraction of the sample is superconducting in a narrow pressure range where collapsed tetragonal and orthorhombic structures coexist. At higher pressures, the collapsed tetragonal structure is stabilized, with the boundary between this structure and the phase of coexisting structures strongly dependent on pressure history. Fluctuations in magnetic degrees of freedom in the phase of coexisting structures appear to be important for superconductivity.
We report a study of magnetic susceptibility and electrical resistivity as a function of temperature and magnetic field in superconducting crystals of La$_{2-x}$Ca$_{1+x}$Cu$_{2}$O$_{6}$ with $x=0.10$ and 0.15 and transition temperature $T_{c}^{rm m} = 54$ K (determined from the susceptibility). When an external magnetic field is applied perpendicular to the CuO$_2$ bilayers, the resistive superconducting transition measured with currents flowing perpendicular to the bilayers is substantially lower than that found with currents flowing parallel to the bilayers. Intriguingly, this anisotropic behavior is quite similar to that observed for the magnetic irreversibility points with the field applied either perpendicular or parallel to the bilayers. We discuss the results in the context of other studies that have found evidence for the decoupling of superconducting layers induced by a perpendicular magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا