ﻻ يوجد ملخص باللغة العربية
Transverse-field muon-spin rotation measurements performed on two samples of LiFeAs demonstrate that the superfluid stiffness of the superconducting condensate in relation to its superconducting transition temperature is enhanced compared to other pnictide superconductors. Evidence is seen for a field-induced magnetic state in a sample with a significantly suppressed superconducting transition temperature. The results in this system highlight the role of direct Fe-Fe interactions in frustrating pairing mediated by antiferromagnetic fluctuations and suggest that, in common with other pnictide superconductors, the system is close to a magnetic instability.
We have performed high-resolution angle-resolved photoemission spectroscopy on Fe-based superconductor LiFeAs (Tc = 18 K). We reveal multiple nodeless superconducting (SC) gaps with 2D/kBTc ratios varying from 2.8 to 6.4, depending on the Fermi surfa
The effect of hydrostatic pressure on the superconductivity in LiFeAs is investigated up to 1.8 GPa. The superconducting transition temperature, T_c, decreases linearly with pressure at a rate of 1.5 K/GPa. The negative pressure coefficient of T_c an
Understanding the material parameters that control the superconducting transition temperature $T_c$ is a problem of fundamental importance. In many novel superconductors, phase fluctuations determine $T_c$, rather than the collapse of the pairing amp
The superconducting transition temperature, Tc, of bilayers comprising underdoped La2-xSrxCuO4 films capped by a thin heavily overdoped metallic La1.65Sr0.35CuO4 layer, is found to increase with respect to Tc of the bare underdoped films. The highest
The internal magnetic field distribution in a mixed state of a cuprate superconductor, Ca$_{2-x}$Na$_x$CuO$_2$Cl$_2$ ($T_{rm c}simeq28.5$ K, near the optimal doping), was measured by muon spin rotation ($mu$SR) technique up to 60 kOe. The $mu$SR line