ﻻ يوجد ملخص باللغة العربية
We demonstrate in both laboratory and numerical experiments that ion bombardment of a modestly sloped surface can create knife-edge like ridges with extremely high slopes. Small pre-fabricated pits expand under ion bombardment, and the collision of two such pits creates knife-edge ridges. Both laboratory and numerical experiments show that the pit propagation speed and the precise shape of the knife edge ridges are universal, independent of initial conditions, as has been predicted theoretically. These observations suggest a novel method of fabrication in which a surface is pre-patterned so that it dynamically evolves to a desired target pattern made of knife-edge ridges.
The trustless nature of permissionless blockchains renders overcollateralization a key safety component relied upon by decentralized finance (DeFi) protocols. Nonetheless, factors such as price volatility may undermine this mechanism. In order to pro
We implement substrate rotation in a 2+1 dimensional solid-on-solid model of ion beam sputtering of solid surfaces. With this extension of the model, we study the effect of concurrent rotation, as the surface is sputtered, on possible topographic reg
We report formation of self organized InP nano dots using 3 keV Ar+ ion sputtering, at $15^circ$ incidence from surface normal, on InP(111) surface. Morphology and optical properties of the sputtered surface, as a function of sputtering time, have be
The morphology evolution of Si (100) surfaces under 1200 eV Ar+ ion bombardment at normal incidence with and without metal incorporation is presented. The formation of nanodot patterns is observed only when the stationary Fe concentration in the surf
We study ion condensation onto a patterned surface of alternating charges. The competition between self-energy and ion-surface interactions leads to the formation of ionic crystalline structures at low temperatures. We consider different arrangements