ترغب بنشر مسار تعليمي؟ اضغط هنا

Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial

74   0   0.0 ( 0 )
 نشر من قبل J\\\"org Reinhold
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate experimentally and theoretically the third harmonic generated by a double-layer fishnet metamaterial. To unambiguously disclose most notably the influence of the magnetic resonance, the generated third harmonic was measured as a function of the angle of incidence. It is shown experimentally and numerically that when the magnetic resonance is excited by pump beam, the angular dependence of the third harmonic signal has a local maximum at an incidence angle of {theta} simeq 20{deg}. This maximum is shown to be a fingerprint of the antisymmetric distribution of currents in the gold layers. An analytical model based on the nonlinear dynamics of the electrons inside the gold shows excellent agreement with experimental and numerical results. This clearly indicates the difference in the third harmonic angular pattern at electric and magnetic resonances of the metamaterial.


قيم البحث

اقرأ أيضاً

Hyperbolic plasmonic metamaterials provide numerous opportunities for designing unusual linear and nonlinear optical properties. We show that the modal overlap of fundamental and second-harmonic light in an anisotropic plasmonic metamaterial slab res ults in the broadband enhancement of radiated second-harmonic intensity by up to 2 orders of magnitudes for TM- and TE-polarized fundamental light, compared to a smooth Au film under TM-polarised illumination. The results open up possibilities to design tuneable frequency-doubling metamaterial with the goal to overcome limitations associated with classical phase matching conditions in thick nonlinear crystals.
We study nonlinear effects in two-dimensional photonic metasurfaces supporting topologically-protected helical edge states at the nanoscale. We observe strong third-harmonic generation mediated by optical nonlinearities boosted by multipolar Mie reso nances of silicon nanoparticles. Variation of the pump-beam wavelength enables independent high-contrast imaging of either bulk modes or spin-momentum-locked edge states. We demonstrate topology-driven tunable localization of the generated harmonic fields and map the pseudospin-dependent unidirectional waveguiding of the edge states bypassing sharp corners. Our observations establish dielectric metasurfaces as a promising platform for the robust generation and transport of photons in topological photonic nanostructures.
We demonstrate second and third harmonic generation from a GaP substrate 500{mu}m thick. The second harmonic field is tuned at the absorption resonance at 335nm, and the third harmonic signal is tuned at 223nm, in a range where the dielectric functio n is negative. These results show that a phase locking mechanism that triggers transparency at the harmonic wavelengths persists regardless of the dispersive properties of the medium, and that the fields propagate hundreds of microns without being absorbed even when the harmonics are tuned to portions of the spectrum that display metallic behavior.
Second and third harmonic generation in the opaque region of a GaAs wafer is experimentally observed both in transmission and reflection. These harmonic components can propagate through an opaque material as long as the pump is tuned to a region of t ransparency or semi-transparency, and correspond to the inhomogeneous solutions of Maxwells equations with nonlinear polarization sources. We show that measurement of the angular and polarization dependence of the observed harmonic components allows one to infer the different nonlinear mechanisms that trigger these processes, including bulk nonlinearity, magnetic Lorentz and surface contributions. Experimental results are compared with a detailed numerical model that takes into account these different effects.
Tunable coherent light sources operating in the vacuum ultraviolet (VUV) region in 100-200-nm (6-12 eV) wavelength range have important spectroscopic applications in many research fields, including time-resolved angle-resolved photoemission spectrosc opy (ARPES). Recent advances in laser technology have enabled the upconversion of visible femtosecond lasers to the vacuum and extreme ultraviolet regions. However, the complexity of their experimental setups and the scarcity of bulk nonlinear crystals for VUV generation have hampered its widespread use. Here, we propose the use of a free-standing dielectric nanomembranes as a simple and practical method for tunable VUV generation. We demonstrate that third harmonic VUV light is generated with sufficient intensity for spectroscopic applications from commercially available SiO2 nanomemebranes of submicron thicknesses under excitation with visible femtosecond laser pulses. The submicron thickness of the nanomembranes is optimal for maximize the VUV generation efficiency and prevents self-phase modulation and spectral broadening of the fundamental beam. The observed VUV photons are up to 10^7 photons per pulse at 157 nm with 1-kHz repetition rate, corresponding to a conversion efficiency of 10^-6. Moreover, the central VUV wavelength can be tuned in 146-190-nm wavelength range by changing the fundamental wavelength. We also explore material and thickness dependence with experiments and calculations. The presented results suggest that dielectric nanomembranes can be used as a practical nonlinear media for VUV spectroscopic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا