ترغب بنشر مسار تعليمي؟ اضغط هنا

Decoherence of quantum discord in an asymmetric-anisotropy spin system

60   0   0.0 ( 0 )
 نشر من قبل Xiang Hao
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The decoherence of quantum correlation is investigated in the Heisenberg spin system with the asymmetric anisotropic interactions. The quantum entanglement and discord are used to quantify the quantumness of the correlations. By the analytical and numerical methods, we find that quantum discord decays asymptotically in time under the effects of the independent local Markovian reservoirs. This is markedly different from the sudden change of the entanglement. Before the disappearance of the entanglement, the dynamic behaviour of quantum discord is very similar to that of the entanglement. It is also shown that the discord declines rapidly for the interacting spin system compared with the case of noninteracting qubits. At an arbitrary finite temperature, the nonzero thermal discord can be enhanced by the asymmetric anisotropic interactions which induce quantum fluctuations.


قيم البحث

اقرأ أيضاً

We consider a multipartite system consisting of two noninteracting qubits each embedded in a single-mode leaky cavity, in turn connected to an external bosonic reservoir. Initially, we take the two qubits in an entangled state while the cavities and the reservoirs have zero photons. We investigate, in this six-partite quantum system, the transfer of quantum discord from the qubits to the cavities and reservoirs. We show that this transfer occurs also when the cavities are not entangled. Moreover, we discuss how quantum discord can be extracted from the cavities and transferred to distant systems by traveling leaking photons, using the input-output theory.
86 - Bassano Vacchini 2016
We consider the description of quantum noise within the framework of the standard Copenhagen interpretation of quantum mechanics applied to a composite system environment setting. Averaging over the environmental degrees of freedom leads to a stochas tic quantum dynamics, described by equations complying with the constraints arising from the statistical structure of quantum mechanics. Simple examples are considered in the framework of open system dynamics described within a master equation approach, pointing in particular to the appearance of the phenomenon of decoherence and to the relevance of quantum correlation functions of the environment in the determination of the action of quantum noise.
We discuss anomalous decoherence effects at zero and finite temperatures in driven coupled quantum spin systems. By numerical simulations of the quantum master equation, it is found that the entanglement of two coupled spin qubits exhibits a non-mono tonic behaviour as a function of the noise strength. The effects of noise strength, the detuning and finite temperature of independent environments on the steady state entanglement are addressed in detail. Pumped by an external field drive, non-trivial steady states can be found, the steady state entanglement increases monotonically up to a maximum at certain optimal noise strength and decreases steadily for higher values. Furthermore, increasing the detuning can not only induce but also suppress steady state entanglement, which depends on the value of noise strength. At last, we delimit the border between presence or absence of steady state entanglement and discuss the related experimental temperatures where typical biomolecular systems exhibit long-lived coherences and quantum entanglement in photosynthetic light-harvesting complexes.
91 - D. Kielpinski , R. A. Briggs , 2013
A common objective for quantum control is to force a quantum system, initially in an unknown state, into a particular target subspace. We show that if the subspace is required to be a decoherence-free subspace of dimension greater than 1, then such c ontrol must be decoherent. That is, it will take almost any pure state to a mixed state. We make no assumptions about the control mechanism, but our result implies that for this purpose coherent control offers no advantage, in principle, over the obvious measurement-based feedback protocol.
90 - N. Canosa , M. Cerezo , N. Gigena 2017
We discuss a generalization of the conditional entropy and one-way information deficit in quantum systems, based on general entropic forms. The formalism allows to consider simple entropic forms for which a closed evaluation of the associated optimiz ation problem in qudit-qubit systems is shown to become feasible, allowing to approximate that of the quantum discord. As application, we examine quantum correlations of spin pairs in the exact ground state of finite $XY$ spin chains in a magnetic field through the quantum discord and information deficit. While these quantities show a similar behavior, their optimizing measurements exhibit significant differences, which can be understood and predicted through the previous approximations. The remarkable behavior of these quantities in the vicinity of transverse and non-transverse factorizing fields is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا