ترغب بنشر مسار تعليمي؟ اضغط هنا

Hot gas in groups: NGC 5328 and the intriguing case of NGC 4756 with XMM-Newton

78   0   0.0 ( 0 )
 نشر من قبل Ginevra Trinchieri
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Trinchieri




اسأل ChatGPT حول البحث

[Abridged] NGC 5238 and NGC 4756 are the brightest unperturbed elliptical galaxies in their respective loose groups. In the present study we aim at characterizing the properties of the hot gas in the halos of the brightest members and in the environment. In NGC 4756 we are also interested in the properties of a substructure identified to the SW and the region connecting the two structures, to search for a physical connection between the two. However, we have to take into account the fact that the group is projected against the bright, X-ray emitting cluster A1361, which heavily contaminates and confuses the emission from the foreground structure. We present a careful analysis of XMM-Newton data of the groups to separate different components. We also present a re-evaluation of the dynamical properties of the systems and . SPH simulations to interpret the results. We find that the X-ray source associated with NGC 4756 indeed sits on top of extended emission from the background cluster A1361, but can be relatively well distinguished from it as a significant excess over it out to rsim150 (~40 kpc). NGC 4756 has an X-ray luminosity of ~10^41 erg/s due to hot gas, with an average temperature of kTsim0.7 keV. We measure a faint diffuse emission also in the region of the subclump to the SW, but more interestingly, we detect gas between the two structures, indicating a possible physical connection. The X-ray emission from NGC 5328 is clearly peaked on the galaxy, also at 10^41 erg/s, and extends to rsim110 kpc. Simulations provide an excellent reproduction of the SED and the global properties of both galaxies, which are caught at two different epochs of the same evolutionary process, with NGC 5328 ~2.5 Gyr younger than NGC 4756.


قيم البحث

اقرأ أيضاً

105 - A. Akyuz , S. Kayaci , H. Avdan 2013
We present results from a study of the non-nuclear discrete sources in a sample of three nearby spiral galaxies (NGC 4395, NGC 4736, and NGC 4258) based on XMM-Newton archival data supplemented with Chandra data for spectral and timing analyses. A to tal of 75 X-ray sources has been detected within the D25 regions of the target galaxies. The large collecting area of XMM-Newton makes the statistics sufficient to obtain spectral fitting for 16 (about 20%) of these sources. Compiling the extensive archival exposures available, we were able to obtain the detailed spectral shapes of diverse classes of point sources. We have also studied temporal properties of these luminous sources. 11 of them are found to show short-term (less than 80 ks) variation while 8 of them show long-term variation within factors of ~ 2 to 5 during a time interval of ~ 2 to 12 years. Timing analysis provides strong evidence that most of these sources are accreting X-ray binary (XRB) systems. One source that has properties different than others was suspected to be a Supernova Remnant (SNR), and our follow-up optical observation confirmed it. Our results indicate that sources within the three nearby galaxies are showing a variety of source populations, including several Ultraluminous X-Ray Sources (ULXs), X-ray binaries (XRBs), transients together with a Super Soft Source (SSS) and a background Active Galactic Nucleus (AGN) candidate.
73 - M. Gliozzi 2003
We report on the nuclear X-ray properties of the radio galaxy NGC 6251 observed with XMM-Newton. NGC 6251 is a well-known radio galaxy with intermediate FRI/II radio properties. It is optically classified as a Seyfert 2 and hosts a supermassive black hole with mass~6e8 solar masses. The 0.4-10 keV EPIC pn continuum is best fitted by two thermal components (kT~0.5 and 1.4 keV, respectively), plus a power law with photon index ~1.9 absorbed by a column density NH~5e20 cm-2. We confirm the previous ASCA detection of a strong iron line. The line, resolved in the EPIC pn spectrum, is adequately fitted with a broad (sigma~0.6 keV) Gaussian at rest-frame energy 6.4 keV with EW 220 eV. We also detect, for the first time, short-term, low-amplitude variability of the nuclear flux on a timescale of a few ks. The spectral properties argue in favor of the presence of a standard accretion disk, ruling out the base of the jet as the sole origin of the X-rays. The moderate X-ray luminosity and lack of strong intrinsic absorption suggest that NGC 6251 is a ``pure type 2 AGN which lacks a broad-line region.
The vast majority of optically identified active galactic nuclei (AGNs) in the local Universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the build-up of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically normal late-type galaxies reveal remarkably the presence of high-ionization [NeV] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the 10^39 - 10^40 ergs s^-1 range, consistent with low luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the mid-infrared [NeV] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range of 10^5 - 10^7 M_solar for NGC 3367 and 10^4 - 10^6 M_solar for NGC 4536.
Using new XMM and Chandra observations we present an analysis of the temperature structure of the hot gas within a radius of 100 kpc of the bright nearby galaxy group NGC 5044. A spectral deprojection analysis of data extracted from circular annuli r eveals that a two-temperature model (2T) of the hot gas is favored over single-phase or cooling flow (M_dot = 4.5 +/- 0.2 M_{sun}/yr) models within the central ~30 kpc. Alternatively, the data can be fit equally well if the temperature within each spherical shell varies continuously from ~T_h to T_c ~ T_h/2, but no lower. The high spatial resolution of the Chandra data allows us to determine that the temperature excursion T_h --> T_c required in each shell exceeds the temperature range between the boundaries of the same shell in the best-fitting single-phase model. This is strong evidence for a multi-phase gas having a limited temperature range. The cooler component of the 2T model has a temperature (T_c ~ 0.7 keV) similar to the kinetic temperature of the stars. The hot phase has a temperature (T_h ~ 1.4 keV) characteristic of the virial temperature of the ~10^{13} M_{sun} halo expected in the NGC 5044 group. However, in view of the morphological disturbances and X-ray holes visible in the Chandra image within R ~10 kpc, bubbles of gas heated to ~T_h in this region may be formed by intermittent AGN feedback. Some additional heating at larger radii may be associated with the evolution of the cold front near R ~50 kpc, as suggested by the sharp edge in the EPIC images.
91 - L. P. Jenkins 2004
We present XMM-Newton EPIC observations of the two nearby starburst merger galaxies NGC 3256 & NGC 3310. The broad-band (0.3-10 keV) integrated X-ray emission from both galaxies shows evidence of multi-phase thermal plasmas plus an underlying hard no n-thermal power-law continuum. NGC 3256 is well-fit with a model comprising two MEKAL components (kT=0.6/0.9 keV) plus a hard power-law (Gamma=2), while NGC 3310 has cooler MEKAL components (kT=0.3/0.6 keV) and a harder power-law tail (Gamma=1.8). Chandra observations of these galaxies both reveal the presence of numerous discrete sources embedded in the diffuse emission, which dominate the emission above ~2 keV and are likely to be the source of the power-law emission. The thermal components show a trend of increasing absorption with higher temperature, suggesting that the hottest plasmas arise from supernova-heated gas within the disks of the galaxies, while the cooler components arise from outflowing galactic winds interacting with the ambient interstellar medium (ISM). We find no strong evidence for an active galactic nucleus (AGN) in either galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا