ﻻ يوجد ملخص باللغة العربية
We study the $pm J$ three-dimensional Ising model with a spatially uniaxially anisotropic bond randomness on the simple cubic lattice. The $pm J$ random exchange is applied in the $xy$ planes, whereas in the z direction only a ferromagnetic exchange is used. After sketching the phase diagram and comparing it with the corresponding isotropic case, the system is studied, at the ferromagnetic-paramagnetic transition line, using parallel tempering and a convenient concentration of antiferromagnetic bonds ($p_z=0 ; p_{xy}=0.176$). The numerical data point out clearly to a second-order ferromagnetic-paramagnetic phase transition belonging in the same universality class with the 3d random Ising model. The smooth finite-size behavior of the effective exponents describing the peaks of the logarithmic derivatives of the order parameter provides an accurate estimate of the critical exponent $1/ u=1.463(3)$ and a collapse analysis of magnetization data gives an estimate $beta/ u=0.516(7)$. These results, are in agreement with previous studies and in particular with those of the isotropic $pm J$ three-dimensional Ising at the ferromagnetic-paramagnetic transition line, indicating the irrelevance of the introduced anisotropy.
The three-dimensional bimodal random-field Ising model is investigated using the N-fold version of the Wang-Landau algorithm. The essential energy subspaces are determined by the recently developed critical minimum energy subspace technique, and two
We investigate by Monte Carlo simulations the critical properties of the three-dimensional bond-diluted Ising model. The phase diagram is determined by locating the maxima of the magnetic susceptibility and is compared to mean-field and effective-med
We investigated the Ising model on a square lattice with ferro and antiferromagnetic interactions modulated by the quasiperiodic Octonacci sequence in both directions of the lattice. We have applied the Replica Exchange Monte Carlo (Parallel Temperin
We investigate and contrast, via entropic sampling based on the Wang-Landau algorithm, the effects of quenched bond randomness on the critical behavior of two Ising spin models in 2D. The random bond version of the superantiferromagnetic (SAF) square
The Binder cumulant at the phase transition of Ising models on square lattices with ferromagnetic couplings between nearest neighbors and with competing antiferromagnetic couplings between next--nearest neighbors, along only one diagonal, is determin