ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface adatom conductance filtering in scanning tunneling spectroscopy of Co-doped BaFe2As2 iron pnictide superconductors

243   0   0.0 ( 0 )
 نشر من قبل Steven Johnston
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish in a combination of ab initio theory and experiments that the tunneling process in scanning tunneling microscopy/spectroscopy on the A-122 iron pnictide superconductors - in this case BaFe$_{2-x}$Co$_x$As$_2$ - involve a strong adatom filtering of the differential conductance from the near-EF Fe3d states, which in turn originates from the top-most sub-surface Fe layer of the crystal. The calculations show that the dominance of surface Ba-related tunneling pathways leaves fingerprints found in the experimental differential conductance data, including large particle-hole asymmetry and an energy-dependent contrast inversion.



قيم البحث

اقرأ أيضاً

154 - Yi Yin , M. Zech , T. L. Williams 2009
We present an atomic resolution scanning tunneling spectroscopy study of superconducting BaFe$_{1.8}$Co$_{0.2}$As$_2$ single crystals in magnetic fields up to $9 text{Tesla}$. At zero field, a single gap with coherence peaks at $overline{Delta}=6.25 text{meV}$ is observed in the density of states. At $9 text{T}$ and $6 text{T}$, we image a disordered vortex lattice, consistent with isotropic, single flux quantum vortices. Vortex locations are uncorrelated with strong scattering surface impurities, demonstrating bulk pinning. The vortex-induced sub-gap density of states fits an exponential decay from the vortex center, from which we extract a coherence length $xi=27.6pm 2.9 text{AA}$, corresponding to an upper critical field $H_{c2}=43 text{T}$.
67 - Ang Li , J.-X. Yin , Jihui Wang 2016
The surface terminations of 122-type alkaline earth metal iron pnictides AEFe2As2 (AE = Ca, Ba) are investigated with scanning tunneling microscopy/spectroscopy (STM/STS). Cleaving these crystals at a cryogenic temperature yields a large majority of terminations with atomically resolved square-root-two (rt2) or 1*2 lattice, as well as the very rare terminations with 1*1 symmetry. By means of lattice alignment and chemical marking, we identify these terminations as rt2-AE, 1*2-As, and rt2-Fe surfaces, respectively. Layer-resolved spectroscopy on these terminating surfaces reveals a well-defined superconducting gap on the As terminations, while the gap features become weaker and absent on AE and Fe terminations respectively. The local gap features are hardly affected by the surface reconstruction on As or AE surface, whereas a suppression of them along with the in-gap states can be induced by As vacancies. The emergence of two impurity resonance peaks at +-2 meV is consistent with the sign-reversal pairing symmetry. The definite identification of surface terminations and their spectroscopic signatures shall provide a more comprehensive understanding of the high-temperature superconductivity in multilayered iron pnictides.
139 - N. Bariv{s}ic , D. Wu , M. Dressel 2010
The electrodynamic properties of Ba(Fe$_{0.92}$Co$_{0.08})_2$As$_{2}$ and Ba(Fe$_{0.95}$Ni$_{0.05})_As$_{2}$ single crystals have been investigated by reflectivity measurements in a wide frequency range. In the metallic state, the optical conductivit y consists of a broad incoherent background and a narrow Drude-like component which determines the transport properties; only the latter contribution strongly depends on the composition and temperature. This subsystem reveals a $T^2$ behavior in the dc resistivity and scattering rate disclosing a hidden Fermi-liquid behavior in the 122 iron-pnictide family. An extended Drude analysis yields the frequency dependence of the effective mass (with $m^*/m_bapprox 5$ in the static limit) and scattering rate that does not disclose a simple power law. The spectral weight shifts to lower energies upon cooling; a significant fraction is not recovered within the infrared range of frequencies.
The presence of macroscopic phase separation between the superconducting and magnetic phases in cfcaf is demonstrated by muon spin rotation (muSR) measurements conducted across their phase boundaries (x=0.05-0.15). The magnetic phase tends to retain the high transition temperature (T_m > T_c), while Co-doping induces strong randomness. The volumetric fraction of superconducting phase is nearly proportional to the Co content $x$ with constant superfluid density. These observations suggest the formation of superconducting islands (or domains) associated with Co ions in the Fe$_2$As$_2$ layers, indicating a very short coherence length.
We report on infrared studies of charge dynamics in a prototypical pnictide system: the BaFe2As2 family. Our experiments have identified hallmarks of the pseudogap state in the BaFe2As2 system that mirror the spectroscopic manifestations of the pseud ogap in the cuprates. The magnitude of the infrared pseudogap is in accord with that of the spin-density-wave gap of the parent compound. By monitoring the superconducting gap of both P- and Co-doped compounds, we find that the infrared pseudogap is unrelated to superconductivity. The appearance of the pseudogap is found to correlate with the evolution of the antiferromagnetic fluctuations associated with the spin-density-wave instability. The strong-coupling analysis of infrared data further reveals the interdependence between the magnetism and the pseudogap in the iron pnictides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا