ترغب بنشر مسار تعليمي؟ اضغط هنا

New photometric investigation of the double ringed galaxy ESO474-G26. Unveiling the formation scenario

53   0   0.0 ( 0 )
 نشر من قبل Marilena Spavone
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Spavone




اسأل ChatGPT حول البحث

We present a detailed photometric study of the peculiar double ringed galaxy ESO474-G26. Near-Infrared (NIR) and optical data have been used, with the main goal to constrain the formation history of ESO474-G26. NIR photometry is fundamental in this kind of study, because gives better constraints on the Spectral Energy Distribution (SED) and well traces the older stellar population of the galaxy. This galaxy presents a very complex structure, with two almost orthogonal rings, one in the equatorial and another in the polar plane, around an elliptical-like object. Due to the peculiar morphology of ESO474-G26, we used both NIR images (J and K bands) to derive accurate analysis of the stellar light distribution, and optical images (in the B, V and R bands) to derive color profiles and color maps to study the structure of the rings. The observational characteristic of ESO474-G26 are typical of galaxies which have experienced some kind of interactions during their evolution. We investigated two alternatives: a merging process and an accretion event.


قيم البحث

اقرأ أيضاً

86 - William C. Keel 2009
I set the stage for discussion of the stellar populations in interacting galaxies by looking back over the slow development of our understanding of these systems. From early anecdotal collections, to systematic cataloging, and finally to increasingly sophisticated n-body calculations, we have seen how gravity in distributed systems can produce the stunning variety of structures we see. At the same time, measures across the spectrum have made it clear that galaxy interactions are linked to star formation, albeit with the physical mechanisms much less clear. Improved data sets, including HST imaging, deep IR data, and large samples with well-defined selection criteria, have started to reveal correlations with dynamical parameters pointing to detailed histories of starbirth during collisions. The merger hypothesis for elliptical galaxies has broadened into seeing interactions and mergers as important parts of the overall evolution of galaxies. The connection becomes more important as we look to higher redshift, where more frequent interactions can drive the evolution of galaxies in multiple ways. Links between the properties of central black holes and surrounding galaxies makes it important likewise to understand the connections between AGN and interactions, which has remained more ambiguous due to the strong role of sample selection. Finally, contemporary data reach deep enough to show that most galaxies have interacted in the observable past; we must consider these events to be a normal part of galaxy history.
The mass assembly and star formation histories of massive galaxies identified at low redshift z in different cosmological hydrodynamical simulations, have been studied through a detailed follow-up backwards in time of their constituent mass elements (sampled by particles) of different types. Then, the configurations they depict at progressively higher zs have been analysed. The analyses show that these histories share common generic patterns, irrespective of particular circumstances. In any case, the results we have found are different depending on the particle type. The most outstanding differences follow. We have found that by z ~ 3.5 - 6, mass elements identified as stellar particles at z=0 exhibit a gaseous cosmic-web-like morphology with scales of ~ 1 physical Mpc, where the densest mass elements have already turned into stars by z ~ 6. These settings are in fact the densest pieces of the cosmic web, where no hot particles show up, and dynamically organized as a hierarchy of flow convergence regions, that is, attraction basins for mass flows. On the other hand, mass elements identified at the diffuse hot coronae surrounding massive galaxies at z = 0, do not display a clear web-like morphology at any z. Diffuse gas is heated when flow convergence regions go through contractive deformations, and most of it keeps hot and with low density along the evolution. To shed light on the physical foundations of the behaviour our analyses show up, as well as on their possible observational implications, these patterns have been confronted with some generic properties of singular flows as described by the adhesion model. We have found that these common patterns simulations show can be interpreted as a consequence of flow properties, that, moreover, could explain different generic observational results on massive galaxies or their samples. We briefly discuss some of them.[Abridged]
105 - D. Elbaz , K. Jahnke , E. Pantin 2009
We discuss observational evidence that quasars play a key role in the formation of galaxies starting from the detailed study of the quasar HE0450-2958 and extending the discussion to a series of converging evidence that radio jets may trigger galaxy formation. The direct detection with VISIR at the ESO-VLT of the 7 kpc distant companion galaxy of HE0450-2958 allows us to spatially separate the sites of quasar and star formation activity in this composite system made of two ultra-luminous infrared galaxies (ULIRGs). No host galaxy has yet been detected for this quasar, but the companion galaxy stellar mass would bring HE0450-2958 in the local M(BH)-M(stellar bulge) relation if it were to merge with the QSO. This is bound to happen because of their close distance (7 kpc) and small relative velocity (~60-200 km/s). We conclude that we may be witnessing the building of the M(BH)-M(stellar bulge) relation, or at least of a major event in that process. The star formation rate (~340 Msun/yr), age (40-200 Myr) and stellar mass ([5-6]x10^10 Msun) are consistent with jet-induced formation of the companion galaxy. We suggest that HE0450-2958 may be fueled in fresh material by cold gas accretion from intergalactic filaments. We map the projected galaxy density surrounding the QSO as a potential tracer of intergalactic filaments and discuss a putative detection. Comparison to other systems suggests that inside-out formation of quasar host galaxies and jet-induced galaxy formation may be a common process. Two tests are proposed for this new paradigm: (1) the detection of offset molecular gas or dust emission with respect to the position of distant QSOs, (2) the delayed formation of host galaxies as a result of QSO activity, hence the two step building of the M(BH)/M(stellar bulge) ratio.
145 - Francois Hammer 2012
Using the deepest and most complete observations of distant galaxies, we investigate the progenitors of present-day large spirals. Observations include spatially-resolved kinematics, detailed morphologies and photometry from UV to mid-IR. Six billion s years ago, half of the present-day spirals were starbursts experiencing major mergers, evidenced by their anomalous kinematics and morphologies. They are consequently modeled using hydrodynamics models of mergers and it perfectly matches with merger rate predictions by state-of-the-art-{Lambda}CDM semi-empirical models. Furthermore imprints in the halo of local galaxies such as M31 or NGC5907 are likely caused by major merger relics. This suggests that the hierarchical scenario has played a major role in shaping the massive galaxies of the Hubble sequence. Linking galaxy properties at different epochs is the best way to fully understand galaxy formation processes and we have tested such a link through generated series of simulations of gas-rich mergers. Mergers have expelled material in galactic haloes and beyond, possibly explaining 60% of the missing baryons in Milky-Way (MW) mass galaxies. A past major merger in M31 might affect drastically our understanding of Local Group galaxies, including MW dwarves. We also propose future directions to observationally constrain the necessary ingredients in galaxy simulations.
We measure the projected galaxy clustering and galaxy-galaxy lensing signals using the Galaxy And Mass Assembly (GAMA) survey and Kilo-Degree Survey (KiDS) to study galaxy bias. We use the concept of non-linear and stochastic galaxy biasing in the fr amework of halo occupation statistics to constrain the parameters of the halo occupation statistics and to unveil the origin of galaxy biasing. The bias function $Gamma_{text{gm}}(r_{text{p}})$, where $r_{text{p}}$ is the projected comoving separation, is evaluated using the analytical halo model from which the scale dependence of $Gamma_{text{gm}}(r_{text{p}})$, and the origin of the non-linearity and stochasticity in halo occupation models can be inferred. Our observations unveil the physical reason for the non-linearity and stochasticity, further explored using hydrodynamical simulations, with the stochasticity mostly originating from the non-Poissonian behaviour of satellite galaxies in the dark matter haloes and their spatial distribution, which does not follow the spatial distribution of dark matter in the halo. The observed non-linearity is mostly due to the presence of the central galaxies, as was noted from previous theoretical work on the same topic. We also see that overall, more massive galaxies reveal a stronger scale dependence, and out to a larger radius. Our results show that a wealth of information about galaxy bias is hidden in halo occupation models. These models should therefore be used to determine the influence of galaxy bias in cosmological studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا