ترغب بنشر مسار تعليمي؟ اضغط هنا

Potts model with q=3 and 4 states on directed Small-World network

369   0   0.0 ( 0 )
 نشر من قبل Raimundo Costa Filho
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Monte Carlo simulations are performed to study the two-dimensional Potts models with q=3 and 4 states on directed Small-World network. The disordered system is simulated applying the Heat bath Monte Carlo update algorithm. A first-order and second-order phase transition is found for q=3 depending on the rewiring probability $p$, but for q=4 the system presents only a first-order phase transition for any value $p$ . This critical behavior is different from the Potts model on a square lattice, where the second-order phase transition is present for $qle4$ and a first-order phase transition is present for q>4.



قيم البحث

اقرأ أيضاً

143 - F.P. Fernandes , F.W.S. Lima , 2010
The critical properties of the spin-1 two-dimensional Blume-Capel model on directed and undi- rected random lattices with quenched connectivity disorder is studied through Monte Carlo simulations. The critical temperature, as well as the critical poi nt exponents are obtained. For the undi- rected case this random system belongs to the same universality class as the regular two-dimensional model. However, for the directed random lattice one has a second-order phase transition for q < qc and a first-order phase transition for q > qc, where qc is the critical rewiring probability. The critical exponents for q < qc was calculated and they do not belong to the same universality class as the regular two-dimensional ferromagnetic model.
The zero-temperature Glauber dynamics is used to investigate the persistence probability $P(t)$ in the Potts model with $Q=3,4,5,7,9,12,24,64, 128$, $256, 512, 1024,4096,16384 $,..., $2^{30}$ states on {it directed} and {it undirected} Barabasi-Alber t networks and Erdos-Renyi random graphs. In this model it is found that $P(t)$ decays exponentially to zero in short times for {it directed} and {it undirected} Erdos-Renyi random graphs. For {it directed} and {it undirected} Barabasi-Albert networks, in contrast it decays exponentially to a constant value for long times, i.e, $P(infty)$ is different from zero for all $Q$ values (here studied) from $Q=3,4,5,..., 2^{30}$; this shows blocking for all these $Q$ values. Except that for $Q=2^{30}$ in the {it undirected} case $P(t)$ tends exponentially to zero; this could be just a finite-size effect since in the other blocking cases you may have only a few unchanged spins.
We study the Ising model in a hierarchical small-world network by renormalization group analysis, and find a phase transition between an ordered phase and a critical phase, which is driven by the coupling strength of the shortcut edges. Unlike ordina ry phase transitions, which are related to unstable renormalization fixed points (FPs), the singularity in the ordered phase of the present model is governed by the FP that coincides with the stable FP of the ordered phase. The weak stability of the FP yields peculiar criticalities including logarithmic behavior. On the other hand, the critical phase is related to a nontrivial FP, which depends on the coupling strength and is continuously connected to the ordered FP at the transition point. We show that this continuity indicates the existence of a finite correlation-length-like quantity inside the critical phase, which diverges upon approaching the transition point.
186 - D. Bolle , R. Heylen 2007
We study the thermodynamic properties of spin systems with bond-disorder on small-world hypergraphs, obtained by superimposing a one-dimensional Ising chain onto a random Bethe graph with p-spin interactions. Using transfer-matrix techniques, we deri ve fixed-point equations describing the relevant order parameters and the free energy, both in the replica symmetric and one step replica symmetry breaking approximation. We determine the static and dynamic ferromagnetic transition and the spinglass transition within replica symmetry for all temperatures, and demonstrate corrections to these results when one step replica symmetry breaking is taken into account. The results obtained are in agreement with Monte-Carlo simulations.
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the top ology of a network. We consider the q-state Potts model on an uncorrelated scale-free network for which the node-degree distribution manifests a power-law decay governed by the exponent lambda. We work within the mean-field approximation, since for systems on random uncorrelated scale-free networks this method is known to often give asymptotically exact results. Depending on particular values of q and lambda one observes either a first-order or a second-order phase transition or the system is ordered at any finite temperature. In a case study, we consider the limit q=1 (percolation) and find a correspondence between the magnetic exponents and those describing percolation on a scale-free network. Interestingly, logarithmic corrections to scaling appear at lambda=4 in this case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا