ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface-induced Magnetism Fluctuations in Single Crystal of NiBi3 Superconductor

205   0   0.0 ( 0 )
 نشر من قبل Hechang Lei
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report anistropy in superconducting and normal state of NiBi3 single crystals with Tc = 4.06 K. The magnetoresistance results indicate the absence of scattering usually associated with ferromagnetic metals, suggesting the absence of bulk long range magnetic order below 300 K. However, the electron spin resonance results demonstrate that ferromagnetism fluctuations exist on the surface of the crystal below 150K.

قيم البحث

اقرأ أيضاً

300 - G. J. Zhao , X. X. Gong , P. C. Xu 2018
Andreev reflection spectroscopy with unpolarized and highly spin-polarized currents has been utilized to study an intermetallic single-crystal superconductor NiBi3. Magnetoresistance at zero bias voltage of point contacts shows the occurrence and sup pression of Andreev reflection by unpolarized and polarized current, respectively. The gap value, its symmetry and temperature dependence have been determined using an unpolarized current. The spin state in the NiBi3 sample is determined to be antiparallel using a highly spin-polarized current. The gap value 2Delta/kBT, gap symmetry and its temperature dependence, combined with the antiparallel spin state show that the bulk NiBi3 is a singlet s-wave superconductor.
The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the mu lti-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high resolution measurements on the structurally simpler cuprate HgBa2CuO4+d (Hg1201), which features one CuO2 plane per unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunneling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modeling of these results indicates that biaxial charge-density-wave within each CuO2 plane is responsible for the reconstruction, and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy.
331 - K. Matano , G.L. Sun , D.L. Sun 2009
We report the first ^{75}As-NMR study on a single crystal of the hole-doped iron-pnictide superconductor Ba_{0.7}K_{0.3}Fe_2As_{2} (T_c = 31.5 K). We find that the Fe antiferromagnetic spin fluctuations are anisotropic and are weaker compared to unde rdoped copper-oxides or cobalt-oxide superconductors. The spin lattice relaxation rate 1/T_1 decreases below T_c with no coherence peak and shows a step-wise variation at low temperatures, which is indicative of multiple superconducting gaps, as in the electron-doped Pr(La)FeAsO$_{1-x}$F$_{x}$. Furthermore, no evidence was obtained for a microscopic coexistence of a long-range magnetic and superconductivity.
Single crystal neutron and high-energy x-ray diffraction have identified the phase lines corresponding to transitions between the ambient-pressure tetragonal (T), the antiferromagnetic orthorhombic (O) and the non-magnetic collapsed tetragonal (cT) p hases of CaFe2As2. We find no evidence of additional structures for pressures up to 2.5 GPa (at 300 K). Both the T-cT and O-cT transitions exhibit significant hysteresis effects and we demonstrate that coexistence of the O and cT phases can occur if a non-hydrostatic component of pressure is present. Measurements of the magnetic diffraction peaks show no change in the magnetic structure or ordered moment as a function of pressure in the O phase and we find no evidence of magnetic ordering in the cT phase. Band structure calculations show that the transition results in a strong decrease of the iron 3d density of states at the Fermi energy, consistent with a loss of the magnetic moment.
Recently, competing electronic instabilities, including superconductivity and density-wave-like order, have been discovered in vanadium-based kagome metals AV3Sb5 (A = K, Rb, Cs) with a nontrivial band topology. This finding stimulates wide interests to study the interplay of these competing electronic orders and possible exotic excitations in the superconducting state. Here, in order to further clarify the nature of density-wave-like transition in these kagome superconductors, we performed 51V and 133Cs nuclear magnetic resonance (NMR) measurements on the CsV3Sb5 single crystal. A first-order phase transition associated with orbital ordering is revealed by observing a sudden splitting of orbital shift in 51V NMR spectrum at the structural transition temperature Ts ~ 94 K. In contrast, the quadrupole splitting from a charge-density-wave (CDW) order on 51V NMR spectrum only appears gradually below Ts with a typical second-order transition behavior, suggesting that the CDW order is a secondary electronic order. Moreover, combined with 133Cs NMR spectrum, the present result also confirms a three-dimensional structural modulation with a 2ax2ax2c period. Above Ts, the temperature-dependent Knight shift and nuclear spin-lattice relaxation rate (1/T1) further indicate the existence of remarkable magnetic fluctuations from vanadium 3d orbitals, which are suppressed due to orbital ordering below Ts. The present results strongly support that, besides CDW order, the previously claimed density-wave-like transition also involves a dominant orbital order, suggesting a rich orbital physics in these kagome superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا