ﻻ يوجد ملخص باللغة العربية
Systems which rapidly evolve through symmetry-breaking transitions on timescales comparable to the fluctuation timescale of the single-particle excitations may behave very differently than under controlled near-ergodic conditions. A real-time investigation with high temporal resolution may reveal new insights into the ordering through the transition that are not available in static experiments. We present an investigation of the system trajectory through a normal-to-superconductor transition in a prototype high-temperature superconducting cuprate in which such a situation occurs. Using a multiple pulse femtosecond spectroscopy technique we measure the system trajectory and time-evolution of the single-particle excitations through the transition in La$_{1.9}$Sr$_{0.1}$CuO$_{4}$ and compare the data to a simulation based on time-dependent Ginzburg-Landau theory, using laser excitation fluence as an adjustable parameter controlling the quench conditions in both experiment and theory. The comparison reveals the presence of significant superconducting fluctuations which precede the transition on short timescales. By including superconducting fluctuations as a seed for the growth of superconducting order we can obtain a satisfactory agreement of the theory with the experiment. Remarkably, the pseudogap excitations apparently play no role in this process.
Evidence is mounting that charge order competes with superconductivity in high Tc cuprates. Whether this has any relationship to the pairing mechanism is unknown since neither the universality of the competition nor its microscopic nature has been es
We use high resolution angle resolved photoemission spectroscopy and density functional theory with experimentally obtained crystal structure parameters to study the electronic properties of CaKFe4As4. In contrast to related CaFe2As2 compounds, CaKFe
We study the emergence of charge ordered phases within a pi-loop current (piLC) model for the pseudogap based on a three-band model for underdoped cuprate superconductors. Loop currents and charge ordering are driven by distinct components of the sho
Unveiling the nature of the pseudogap and its relation to both superconductivity and antiferromagnetic Mott insulators, the pairing mechanism, and a non-Fermi liquid phase is a key issue for understanding high temperature superconductivity in cuprate
This paper discusses the synthesis, characterization, and comprehensive study of Ba-122 single crystals with various substitutions and various $T_c$. The paper uses five complementary techniques to obtain a self-consistent set of data on the supercon