ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification Study of WISE Infrared Sources: Identification of Candidate Asymptotic Giant Branch Stars

96   0   0.0 ( 0 )
 نشر من قبل Zhongxiang Wang
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the WISE all-sky source catalogue there are 76 million mid-infrared (MIR) point sources that were detected at the first three WISE bands and have association with only one 2MASS near-IR source within 3 arcsec. We search for their identifications in the SIMBAD database and find 3.2 million identified sources. Based on these known sources, we establish three criteria for selecting candidate AGB stars in the Galaxy, which are three defined occupation zones in a color-color diagram, Galactic latitude |gb|< 20 deg, and corrected WISE third-band W3c < 11. Applying these criteria to the WISE+2MASS sources, 1.37 million of them are selected. We analyze the WISE third-band W3 distribution of the selected sources, and further establish that W3 < 8 is required in order to exclude a large fraction of normal stars in them. We therefore find 0.47 million candidate AGB stars in our Galaxy from the WISE source catalogue. Using W3c, we estimate their distances and derive their Galactic distributions. The candidates are generally located around the Galactic center uniformly, with 68% (1-sigma) of them within approximately 8 kpc. We discuss that optical spectroscopy can be used to verify the C-rich AGB stars in our candidates, and they will be good targets for the LAMOST survey that is planned to start from fall of 2012.



قيم البحث

اقرأ أيضاً

A long debated issue concerning the nucleosynthesis of neutron-rich elements in Asymptotic Giant Branch (AGB) stars is the identification of the neutron source. We report intermediate-mass (4 to 8 solar masses) AGB stars in our Galaxy that are rubidi um-rich owing to overproduction of the long-lived radioactive isotope 87Rb, as predicted theoretically 40 years ago. This represents a direct observational evidence that the 22Ne(alpha,n)25Mg reaction must be the dominant neutron source in these stars. These stars then challenge our understanding of the late stages of the evolution of intermediate-mass stars and would promote a highly variable Rb/Sr environment in the early solar nebula.
283 - L. D. Matthews 2013
We present an imaging study of a sample of eight asymptotic giant branch (AGB) stars in the HI 21-cm line. Using observations from the Very Large Array, we have unambiguously detected HI emission associated with the extended circumstellar envelopes o f six of the targets. The detected HI masses range from M_HI ~ 0.015-0.055 M_sun. The HI morphologies and kinematics are diverse, but in all cases appear to be significantly influenced by the interaction between the circumstellar envelope and the surrounding medium. Four stars (RX Lep, Y UMa, Y CVn, and V1942 Sgr) are surrounded by detached HI shells ranging from 0.36 to 0.76 pc across. We interpret these shells as resulting from material entrained in a stellar outflow being abruptly slowed at a termination shock where it meets the local medium. RX Lep and TX Psc, two stars with moderately high space velocities (V_space>56 km/s), exhibit extended gaseous wakes (~0.3 and 0.6 pc in the plane of the sky), trailing their motion through space. The other detected star, R Peg, displays a peculiar horseshoe-shaped HI morphology with emission extended on scales up to ~1.7 pc; in this case, the circumstellar debris may have been distorted by transverse flows in the local interstellar medium. We briefly discuss our new results in the context of the entire sample of evolved stars that has been imaged in HI to date.
This paper presents a summary of four invited and twelve contributed presentations on asymptotic giant branch stars and red supergiants, given over the course of two afternoon splinter sessions at the 19th Cool Stars Workshop. It highlights both rece nt observations and recent theory, with some emphasis on high spatial resolution, over a wide range of wavelengths. Topics covered include 3D models, convection, binary interactions, mass loss, dust formation and magnetic fields.
We present new optical broad-band (UBVRI) aperture polarimetric observations of 53 post-asymptotic giant branch (AGB) stars selected to exhibit a large near-infrared excess. 24 out of the 53 stars (45% of our sample) are presented for the first time. A statistical analysis shows four distinctive groups of polarized post-AGB stars: unpolarized or very lowly polarized (degree of polarization or DoP < 1%), lowly polarized (1% < DoP < 4%), moderately polarized (4% < DoP < 8%) and highly polarized (DoP > 8%). 23 out of the 53 (66%) belong to the first group, 10 (19%) to the second, five (9%) to the third and only three (6%) to the last group. Approximately, 34% of our sample was found to be unpolarized objects, which is close to the percentage of round planetary nebulae. On average, the low and moderate groups show a wavelength-dependent polarization that increases towards shorter wavelength, implying an intrinsic origin of the polarization, which signifies a Rayleigh-like scattering spectrum typical for non-symmetrical envelopes composed principally of small dust grains. The moderately polarized stars exhibit higher K-W3 and W1-W3 colour indices compared with the group of lowly polarized stars suggesting a possible relation between DoP and mass-loss rate. Moreover, they are found to be systematically colder (redder in B-V), which may be associated with the condensation process close to these stars that results in higher degree of polarization. We also provide evidence that multiple scattering in optically thin polar outflows is the mechanism that gives high DoP in post-AGB stars with a bipolar or multi-polar envelopes.
Certain types of large amplitude AGB variable are proving to be powerful distance indicators that will rival Cepheids in the JWST era of high precision infrared photometry. These are predominantly found in old populations and have low mass progenitor s. At the other end of the AGB mass-scale, large amplitude variables, particularly those undergoing hot bottom burning, are the most luminous representatives of their population. These stars are less than one Gyr old, are often losing mass copiously and are vital to our understanding of the integrated light of distant galaxies as well as to chemical enrichment. However, the evolution of such very luminous AGB variables is rapid and remains poorly understood. Here I discuss recent infrared observations of both low- and intermediate-mass Mira variables in the Local Group and beyond.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا