ﻻ يوجد ملخص باللغة العربية
We propose a novel interpretation of the collapsed variational Bayes inference with a zero-order Taylor expansion approximation, called CVB0 inference, for latent Dirichlet allocation (LDA). We clarify the properties of the CVB0 inference by using the alpha-divergence. We show that the CVB0 inference is composed of two different divergence projections: alpha=1 and -1. This interpretation will help shed light on CVB0 works.
This paper presents studies on a deterministic annealing algorithm based on quantum annealing for variational Bayes (QAVB) inference, which can be seen as an extension of the simulated annealing for variational Bayes (SAVB) inference. QAVB is as easy
Stochastic variational inference for collapsed models has recently been successfully applied to large scale topic modelling. In this paper, we propose a stochastic collapsed variational inference algorithm in the sequential data setting. Our algorith
This paper presents studies on a deterministic annealing algorithm based on quantum annealing for variational Bayes (QAVB) inference, which can be seen as an extension of the simulated annealing for variational Bayes (SAVB) inference. QAVB is as easy
Stochastic variational inference for collapsed models has recently been successfully applied to large scale topic modelling. In this paper, we propose a stochastic collapsed variational inference algorithm for hidden Markov models, in a sequential da
We would like to learn latent representations that are low-dimensional and highly interpretable. A model that has these characteristics is the Gaussian Process Latent Variable Model. The benefits and negative of the GP-LVM are complementary to the Va