ﻻ يوجد ملخص باللغة العربية
The reformulated coupled-cluster method (CCM), in which average many-body potentials are introduced, provides a useful framework to organize numerous terms appearing in CCM equations, which enables us to clarify the structure of the CCM theory and physical importance of various terms more easily. We explicitly apply this framework to $^4$He, retaining one-body and two-body correlations as the first illustrating attempt. Numerical results with using two modern nucleon-nucleon interactions (AV18 and CD-Bonn) and their low-momentum interactions are presented. The characters of short-range and many-body correlations are discussed. Although not considered explicitly, the expression of the ground-state energy in the presence of a three-nucleon force is given.
We demonstrate the capability of coupled-cluster theory to compute the Coulomb sum rule for the $^4$He and $^{16}$O nuclei using interactions from chiral effective field theory. We perform several checks, including a few-body benchmark for $^4$He. We
Four light-mass nuclei are considered by an effective two-body clusterisation method; $^6$Li as $^2$H$+^4$He, $^7$Li as $^3$H$+^4$He, $^7$Be as $^3$He$+^4$He, and $^8$Be as $^4$He$+^4$He. The low-energy spectrum of each is determined from single-chan
We study the nuclear ground-state properties by using the unitary-model-operator approach (UMOA). Recently, the particle-basis formalism has been introduced in the UMOA and enables us to employ the charge-dependent nucleon-nucleon interaction. We eva
Antiproton scattering off $^3He$ and $^4He$ targets is considered at beam energies below 300 MeV within the Glauber-Sitenko approach, utilizing the $bar N N$ amplitudes of the Julich model as input. A good agreement with available data on differentia
The Borromean $^6$He nucleus is an exotic system characterized by two `halo neutrons orbiting around a compact $^4$He (or $alpha$) core, in which the binary subsystems are unbound. The simultaneous reproduction of its small binding energy and extende