ترغب بنشر مسار تعليمي؟ اضغط هنا

An effective two-body model for spectra of clusters of ${}^2$H, ${}^3$H, ${}^3$He, and $^4$He with $^4$He, and $^2$H-$^4$He scattering

108   0   0.0 ( 0 )
 نشر من قبل Paul Fraser
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Four light-mass nuclei are considered by an effective two-body clusterisation method; $^6$Li as $^2$H$+^4$He, $^7$Li as $^3$H$+^4$He, $^7$Be as $^3$He$+^4$He, and $^8$Be as $^4$He$+^4$He. The low-energy spectrum of each is determined from single-channel Lippmann-Schwinger equations, as are low-energy elastic scattering cross sections for the $^2$H$+^4$He system. These are presented at many angles and energies for which there are data. While some of these systems may be more fully described by many-body theories, this work establishes that a large amount of data may be explained by these two-body clusterisations.



قيم البحث

اقرأ أيضاً

{it Ab initio} calculation of the total cross section for the reactions $^{4}rm{He}(gamma,p)^3rm{H}$ and $^{4}rm{He}(gamma,n)^3rm{He}$ is presented, using state-of-the-art nuclear forces. The Lorentz integral transform (LIT) method is applied, which allows exact treatment of the final state interaction (FSI). The dynamic equations are solved using the effective interaction hyperspherical harmonics (EIHH) method. In this calculation of the cross sections the three-nucleon force is fully taken into account, except in the source term of the LIT equation for the FSI transition matrix element.
271 - E. Krotscheck , R. Zillich 1998
We develop a first principles, microscopic theory of impurity atom scattering from inhomogeneous quantum liquids such as adsorbed films, slabs, or clusters of He-4. The theory is built upon a quantitative, microscopic description of the ground state of both the host liquid as well as the impurity atom. Dynamic effects are treated by allowing all ground-state correlation functions to be time-dependent. Our description includes both the elastic and inelastic coupling of impurity motion to the excitations of the host liquid. As a specific example, we study the scattering of He-3 atoms from adsorbed He-4 films. We examine the dependence of ``quantum reflection on the substrate, and the consequences of impurity bound states, resonances, and background excitations for scattering properties. A thorough analysis of the theoretical approach and the physical circumstances point towards the essential role played by inelastic processes which determine almost exclusively the reflection probabilities. The coupling to impurity resonances within the film leads to a visible dependence of the reflection coefficient on the direction of the impinging particle.
Antiproton scattering off $^3He$ and $^4He$ targets is considered at beam energies below 300 MeV within the Glauber-Sitenko approach, utilizing the $bar N N$ amplitudes of the Julich model as input. A good agreement with available data on differentia l $bar p ^4He$ cross sections and on $bar p ^3He$ and $pbar ^4He$ reaction cross sections is obtained. Predictions for polarized total $bar p ^3$He cross sections are presented, calculated within the single-scattering approximation and including Coulomb-nuclear interference effects. The kinetics of the polarization buildup is discussed.
The extremely neutron-rich system $^{7}$H was studied in the direct $^2$H($^8$He,$^3$He)$^7$H transfer reaction with a 26 AMeV secondary $^{8}$He beam [Bezbakh et al., Phys. Rev. Lett. 124 (2020) 022502]. The missing mass spectrum and center-of-mass (c.m.) angular distributions of $^{7}$H, as well as the momentum distribution of the $^{3}$H fragment in the $^{7}$H frame, were constructed. In addition to the investigation reported in Ref. [Bezbakh et al., Phys. Rev. Lett. 124 (2020) 022502], we carried out another experiment with the same beam but a modified setup, which was cross-checked by the study of the $^2$H($^{10}$Be,$^3$He$)^{9}$Li reaction. A solid experimental evidence is provided that two resonant states of $^{7}$H are located in its spectrum at 2.2(5) and 5.5(3) MeV relative to the $^3$H+4$n$ decay threshold. Also, there are indications that the resonant states at 7.5(3) and 11.0(3) MeV are present in the measured $^{7}$H spectrum. Based on the energy and angular distributions, obtained for the studied $^2$H($^8$He,$^3$He)$^7$H reaction, the weakly populated 2.2(5) MeV peak is ascribed to the $^7$H ground state. It is highly plausible that the firmly ascertained 5.5(3) MeV state is the $5/2^+$ member of the $^7$H excitation $5/2^+$-$3/2^+$ doublet, built on the $2^+$ configuration of valence neutrons. The supposed 7.5 MeV state can be another member of this doublet, which could not be resolved in Ref. [Bezbakh et al., Phys. Rev. Lett. 124 (2020) 022502]. Consequently, the two doublet members appeared in the spectrum of $^{7}$H in [Bezbakh et al., Phys. Rev. Lett. 124 (2020) 022502] as a single broad 6.5 MeV peak.
230 - O. M. Povoroznyk 2012
Measurements of the t-t and p-t coincidence events in the $^3$H ($alpha$, ttp) reaction have been obtained at $E_alpha$ incident energy of 67.2 MeV. Various appropriate angular configurations of detectors were chosen in order to observe the populatio n of the $^6$He$^*$ state at around 18 MeV. Its contribution appears at the $E_{rm tt}$ relative energy of 6.0 MeV by the analysis of bidimensional spectra. We found the formation of the $^6$He excited state at $E^* = 18.3 pm 0.2$ MeV (with a $Gamma$ width of 1.1 $pm$ 0.3 MeV) by the decay into the t+t binary channel, since the threshold energy of the t+t channel is 12.31 MeV. In each analyzed bidimensional energy spectrum of ($E_{rm t}$, $E_{rm t}$) and ($E_{rm p}$, $E_{rm t}$) coincidence events resonance structures are present due to the formation of both $^6$He$^*$ and $^4$He$^*$ excited states. Our results on the $E^*$ and $Gamma$ values regarding the $^6$He$^*$ level of about 18 MeV are compared with the results obtained by other reactions. Moreover, we also found new $Gamma$ width values of 0.7 $pm$ 0.3 and 0.8 $pm$ 0.4 MeV for the 14.0 $pm$ 0.4 and 16.1 $pm$ 0.4 MeV $^6$He levels, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا