ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong magnetic coupling between an electronic spin qubit and a mechanical resonator

114   0   0.0 ( 0 )
 نشر من قبل Peter Rabl
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a technique that enables a strong, coherent coupling between a single electronic spin qubit associated with a nitrogen-vacancy impurity in diamond and the quantized motion of a magnetized nano-mechanical resonator tip. This coupling is achieved via careful preparation of dressed spin states which are highly sensitive to the motion of the resonator but insensitive to perturbations from the nuclear spin bath. In combination with optical pumping techniques, the coherent exchange between spin and motional excitations enables ground state cooling and the controlled generation of arbitrary quantum superpositions of resonator states. Optical spin readout techniques provide a general measurement toolbox for the resonator with quantum limited precision.



قيم البحث

اقرأ أيضاً

We report on the nonlinear coupling between the mechanical modes of a nanotube resonator. The coupling is revealed in a pump-probe experiment where a mode driven by a pump force is shown to modify the motion of a second mode measured with a probe for ce. In a second series of experiments, we actuate the resonator with only one oscillating force. Mechanical resonances feature exotic lineshapes with reproducible dips, peaks, and jumps when the measured mode is commensurate with another mode with a frequency ratio of either 2 or 3. Conventional lineshapes are recovered by detuning the frequency ratio using the voltage on a nearby gate electrode. The exotic lineshapes are attributed to strong coupling between the mechanical modes. The possibility to control the strength of the coupling with the gate voltage holds promise for various experiments, such as quantum manipulation, mechanical signal processing, and the study of the quantum-toclassical transition.
The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high quality single-crystal diamond resonators h as led to significant interest in a hybrid system consisting of nitrogen-vacancy center spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain interaction has not been well characterized. Here, we demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded nitrogen-vacancy center. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogen-vacancy ground state spin. The nitrogen-vacancy center is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3 10^(-6) strain Hz^(-1/2). Finally, we show how this spin-resonator system could enable coherent spin-phonon interactions in the quantum regime.
We present a new optomechanical device where the motion of a micromechanical membrane couples to a microwave resonance of a three-dimensional superconducting cavity. With this architecture, we realize ultrastrong parametric coupling, where the coupli ng rate not only exceeds the dissipation rates in the system but also rivals the mechanical frequency itself. In this regime, the optomechanical interaction induces a frequency splitting between the hybridized normal modes that reaches 88% of the bare mechanical frequency, limited by the fundamental parametric instability. The coupling also exceeds the mechanical thermal decoherence rate, enabling new applications in ultrafast quantum state transfer and entanglement generation.
We consider a feedback control loop rectifying particle transport through a single quantum dot that is coupled to two electronic leads. While monitoring the occupation of the dot, we apply conditional control operations by changing the tunneling rate s between the dots and its reservoirs, which can be interpreted as the action of a Maxwell demon opening or closing a shutter. This can generate a current at equilibrium or even against a potential bias, producing electric power from information. While this interpretation is well-explored in the weak-coupling limit, we can address the strong-coupling regime with a fermionic reaction-coordinate mapping, which maps the system into a serial triple quantum dot coupled to two leads. There, we find that a continuous projective measurement of the central dot would lead to a complete suppression of electronic transport due to the quantum Zeno effect. In contrast, a microscopic model for the quantum point contact detector implements a weak measurement, which allows for closure of the control loop without inducing transport blockade. In the weak-coupling regime between the central dot and its leads, the energy flows associated with the feedback loop are negligible, and the information gained in the measurement induces a bound for the generated electric power. In contrast, in the strong coupling limit, the protocol may require more energy for opening and closing the shutter than electric power produced, such that the device is no longer information-dominated and can thus not be interpreted as a Maxwell demon.
The combination of low mass density, high frequency, and high quality-factor of mechanical resonators made of two-dimensional crystals such as graphene make them attractive for applications in force sensing/mass sensing, and exploring the quantum reg ime of mechanical motion. Microwave optomechanics with superconducting cavities offers exquisite position sensitivity and enables the preparation and detection of mechanical systems in the quantum ground state. Here, we demonstrate coupling between a multilayer graphene resonator with quality factors up to 220,000 and a high-$textit{Q}$ superconducting cavity. Using thermo-mechanical noise as calibration, we achieve a displacement sensitivity of 17 fm/$sqrt{text{Hz}}$. Optomechanical coupling is demonstrated by optomechanically induced reflection (OMIR) and absorption (OMIA) of microwave photons. We observe 17 dB of mechanical microwave amplification and signatures of strong optomechanical backaction. We extract the cooperativity $C$, a characterization of coupling strength, quantitatively from the measurement with no free parameters and find $C=8$, promising for the quantum regime of graphene motion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا