ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergence of a Dynamic Super-Structural Order Integrating Antiferroelectric and Antiferrodistortive Competing Instabilities in EuTiO3

313   0   0.0 ( 0 )
 نشر من قبل Philip Ryan Dr
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microscopic structural instabilities of EuTiO3 single crystal were investigated by synchrotron x-ray diffraction. Antiferrodistortive (AFD) oxygen octahedral rotational order was observed alongside Ti derived antiferroelectric (AFE) distortions. The competition between the two instabilities is reconciled through a cooperatively modulated structure allowing both to coexist. The electric and magnetic field effect on the modulated AFD order shows that the origin of large magnetoelectric coupling is based upon the dynamic equilibrium between the AFD - antiferromagnetic interactions versus the electric polarization - ferromagnetic interactions.

قيم البحث

اقرأ أيضاً

146 - V. Goian , S. Kamba , O. Pacherova 2012
X-ray diffraction, dynamical mechanical analysis and infrared reflectivity studies revealed an antiferrodistortive phase transition in EuTiO3 ceramics. Near 300K the perovskite structure changes from cubic Pm-3m to tetragonal I4/mcm due to antiphase tilting of oxygen octahedra along the c axis (a0a0c- in Glazer notation). The phase transition is analogous to SrTiO3. However, some ceramics as well as single crystals of EuTiO3 show different infrared reflectivity spectra bringing evidence of a different crystal structure. In such samples electron diffraction revealed an incommensurate tetragonal structure with modulation wavevector q ~ 0.38 a*. Extra phonons in samples with modulated structure are activated in the IR spectra due to folding of the Brillouin zone. We propose that defects like Eu3+ and oxygen vacancies strongly influence the temperature of the phase transition to antiferrodistortive phase as well as the tendency to incommensurate modulation in EuTiO3.
Neutron diffraction studies using powder samples have been used to understand the complex sequence of low temperature phase transitions of NaNbO3 in the temperature range from 12 K-350 K. Detailed Rietveld analysis of the diffraction data reveal that the antiferroelectric to ferroelectric phase transition occurs on cooling around 73 K while the reverse ferroelectric to antiferroelectric transition occurs on heating at 245 K. However, the former transformation is not complete till down to 12 K and there is unambiguous evidence for the presence of the ferroelectric R3c phase coexisting with an antiferroelectic phase (Pbcm) over a wide range of temperatures. The coexisting phases and reported anomalous smearing of the dielectric response akin to dipole glasses and relaxors observed in the same temperature range are consistent with competing ferroelectric and antiferroelectric interactions in NaNbO3. We have carried out theoretical lattice dynamical calculations which reveal that the free energies of the antiferroelectric Pbcm and ferroelectric R3c phases are nearly identical over a wide range of temperature. The small energy difference between the two phases is of interest as it explains the observed coexistence of these phases over a wide range of temperature. The computed double well depths and energy barriers from paraelectric Pm m to antiferroelectric Pbcm and ferroelectric R3c phases in NaNbO3 are also quite similar, although the ferroelectric R3c phase has a slightly lower energy.
Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectr icity or antiferroelectricity, respectively. However, the recently discovered antiferroelectrics of fluorite structure (HfO$_2$ and ZrO$_2$) are different: A non-polar phase transforms into a polar phase by spontaneous inversion symmetry breaking upon the application of an electric field. Here, we show that this structural transition in antiferroelectric ZrO$_2$ gives rise to a negative capacitance, which is promising for overcoming the fundamental limits of energy efficiency in electronics. Our findings provide insight into the thermodynamically forbidden region of the antiferroelectric transition in ZrO$_2$ and extend the concept of negative capacitance beyond ferroelectricity. This shows that negative capacitance is a more general phenomenon than previously thought and can be expected in a much broader range of materials exhibiting structural phase transitions.
We study the antiferrodistortive instability and its interaction with ferroelectricity in cubic perovskite compounds. Our first-principles calculations show that coexistence of both instabilities is very common. We develop a first-principles scheme t o study the thermodynamics of these compounds when both instabilities are present, and apply it to SrTiO$_3$. We find that increased pressure enhances the antiferrodistortive instability while suppressing the ferroelectric one. Moreover, the presence of one instability tends to suppress the other. A very rich $P$--$T$ phase diagram results.
The phase purity and the lattice dynamics in bulk EuTiO3 were investigated both microscopically, using X-ray and neutron diffraction, 151-Eu-Mossbauer spectroscopy, and 151-Eu nuclear inelastic scattering, and macroscopically using calorimetry, reson ant ultrasound spectroscopy, and magnetometry. Furthermore, our investigations were corroborated by ab initio theoretical studies. The perovskite symmetry, Pm-3m, is unstable at the M- and R- points of the Brillouin zone. The lattice instabilities are lifted when the structure relaxes in one of the symmetries: I4/mcm, Imma, R-3c with relative relaxation energy around -25 meV. Intimate phase analysis confirmed phase purity of our ceramics. A prominent peak in the Eu specific density of phonon states at 11.5 meV can be modelled in all candidate symmetries. A stiffening on heating around room temperature is indicative of a phase transition similar to the one observed in SrTiO3, however, although previous studies reported the structural phase transition to tetragonal I4/mcm phase our detailed sample purity analysis and thorough structural studies using complementary techniques did not confirm a direct phase transition. Instead, in the same temperature range, Eu delocalization is observed which might explain the lattice dynamical instabilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا