ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice instabilities in bulk EuTiO3

99   0   0.0 ( 0 )
 نشر من قبل Raphael Hermann
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The phase purity and the lattice dynamics in bulk EuTiO3 were investigated both microscopically, using X-ray and neutron diffraction, 151-Eu-Mossbauer spectroscopy, and 151-Eu nuclear inelastic scattering, and macroscopically using calorimetry, resonant ultrasound spectroscopy, and magnetometry. Furthermore, our investigations were corroborated by ab initio theoretical studies. The perovskite symmetry, Pm-3m, is unstable at the M- and R- points of the Brillouin zone. The lattice instabilities are lifted when the structure relaxes in one of the symmetries: I4/mcm, Imma, R-3c with relative relaxation energy around -25 meV. Intimate phase analysis confirmed phase purity of our ceramics. A prominent peak in the Eu specific density of phonon states at 11.5 meV can be modelled in all candidate symmetries. A stiffening on heating around room temperature is indicative of a phase transition similar to the one observed in SrTiO3, however, although previous studies reported the structural phase transition to tetragonal I4/mcm phase our detailed sample purity analysis and thorough structural studies using complementary techniques did not confirm a direct phase transition. Instead, in the same temperature range, Eu delocalization is observed which might explain the lattice dynamical instabilities.



قيم البحث

اقرأ أيضاً

The magnetic properties of single-crystal EuTiO3 are suggestive of nanoscale disorder below its cubic-tetragonal phase transition. We demonstrate that electric field cooling acts to restore monocrystallinity, thus confirming that emergent structural disorder is an intrinsic low-temperature property of this material. Using torque magnetometry, we deduce that tetragonal EuTiO3 enters an easy-axis antiferromagnetic phase at 5.6 K, with a first-order transition to an easy-plane ground state below 3 K. Our data is reproduced by a 3D anisotropic Heisenberg spin model.
Calcium vanadate CaV$_2$O$_4$ has a crystal structure of quasi-one-dimensional zigzag chains composed of orbital-active V$^{3+}$ ions and undergoes successive structural and antiferromagnetic phase transitions at $T_ssim 140$ K and $T_N sim 70$ K, re spectively. We perform ultrasound velocity measurements on a single crystal of CaV$_2$O$_4$. The temperature dependence of its shear elastic moduli exhibits huge Curie-type softening upon cooling that emerges above and below $T_s$ depending on the elastic mode. The softening above $T_s$ suggests the presence of either onsite Jahn-Teller-type or intersite ferro-type orbital fluctuations in the two inequivalent V$^{3+}$ zigzag chains. The softening below $T_s$ suggests the occurrence of a dimensional spin-state crossover, from quasi-one to three, that is driven by the spin-lattice coupling along the inter-zigzag-chain orthogonal direction. The successive emergence of the orbital- and spin-driven lattice instabilities above and below $T_s$, respectively, is unique to the orbital-spin zigzag chain system of CaV$_2$O$_4$.
The search for new elementary particles is one of the most basic pursuits in physics, spanning from subatomic physics to quantum materials. Magnons are the ubiquitous elementary quasiparticle to describe the excitations of fully-ordered magnetic syst ems. But other possibilities exist, including fractional and multipolar excitations. Here, we demonstrate that strong quantum interactions exist between three flavors of elementary quasiparticles in the uniaxial spin-one magnet FeI2. Using neutron scattering in an applied magnetic field, we observe spontaneous decay between conventional and heavy magnons and the recombination of these quasiparticles into a super-heavy bound-state. Akin to other contemporary problems in quantum materials, the microscopic origin for new physics in FeI2 is the quasi-flat nature of excitation bands and the presence of Kitaev anisotropic magnetic exchange interactions.
In the present paper we extend the method to detect Pomeranchuk instabilities in lattice systems developed in previous works to study more general situations. The main result presented here is the extension of the method to include finite temperature effects, which allows to compute critical temperatures as a function of interaction strengths and density of carriers. Furthermore, it can be applied to multiband problems which would be relevant to study systems with spin/color degrees of freedom. Altogether, the present extended version provides a potentially powerful technique to investigate microscopic realistic models relevant to e.g. the Fermi liquid to nematic transition extensively studied in connection with different materials such as cuprates, ruthenates, etc.
Ultrasound velocity measurements of the orbital-degenerate frustrated spinel MgV$_2$O$_4$ are performed in the high-purity single crystal which exhibits successive structural and antiferromagnetic phase transitions, and in the disorder-introduced sin gle crystal which exhibits spin-glass-like behavior. The measurements reveal that two-types of unusual temperature dependence of the elastic moduli coexist in the cubic paramagnetic phase, which are resolved by magnetic-field and disorder sensitivities: huge Curie-type softening with decreasing temperature, and concave temperature dependence with a characteristic minimum. These elastic anomalies suggest the coupling of lattice to coexisting orbital fluctuations and orbital-spin-coupled excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا