ترغب بنشر مسار تعليمي؟ اضغط هنا

On the easiest way to connect $k$ points in the Random Interlacements process

119   0   0.0 ( 0 )
 نشر من قبل Johan Tykesson
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the random interlacements process with intensity $u$ on ${mathbb Z}^d$, $dge 5$ (call it $I^u$), built from a Poisson point process on the space of doubly infinite nearest neighbor trajectories on ${mathbb Z}^d$. For $kge 3$ we want to determine the minimal number of trajectories from the point process that is needed to link together $k$ points in $mathcal I^u$. Let $$n(k,d):=lceil frac d 2 (k-1) rceil - (k-2).$$ We prove that almost surely given any $k$ points $x_1,...,x_kin mathcal I^u$, there is a sequence ofof $n(k,d)$ trajectories $gamma^1,...,gamma^{n(k,d)}$ from the underlying Poisson point process such that the union of their traces $bigcup_{i=1}^{n(k,d)}tr(gamma^{i})$ is a connected set containing $x_1,...,x_k$. Moreover we show that this result is sharp, i.e. that a.s. one can find $x_1,...,x_k in I^u$ that cannot be linked together by $n(k,d)-1$ trajectories.



قيم البحث

اقرأ أيضاً

For a large class of amenable transient weighted graphs $G$, we prove that the sign clusters of the Gaussian free field on $G$ fall into a regime of strong supercriticality, in which two infinite sign clusters dominate (one for each sign), and finite sign clusters are necessarily tiny, with overwhelming probability. Examples of graphs belonging to this class include regular lattices like $mathbb{Z}^d$, for $d geqslant 3$, but also more intricate geometries, such as Cayley graphs of suitably growing (finitely generated) non-Abelian groups, and cases in which random walks exhibit anomalous diffusive behavior, for instance various fractal graphs. As a consequence, we also show that the vacant set of random interlacements on these objects, introduced by Sznitman in arXiv:0704.2560, and which is intimately linked to the free field, contains an infinite connected component at small intensities. In particular, this result settles an open problem from arXiv:1010.1490.
224 - Zijie Zhuang 2020
We prove the existence of non-trivial phase transitions for the intersection of two independent random interlacements and the complement of the intersection. Some asymptotic results about the phase curves are also obtained. Moreover, we show that at least one of these two sets percolates in high dimensions.
We consider reversible random walks in random environment obtained from symmetric long--range jump rates on a random point process. We prove almost sure transience and recurrence results under suitable assumptions on the point process and the jump ra te function. For recurrent models we obtain almost sure estimates on effective resistances in finite boxes. For transient models we construct explicit fluxes with finite energy on the associated electrical network.
Given a sequence of lattice approximations $D_Nsubsetmathbb Z^2$ of a bounded continuum domain $Dsubsetmathbb R^2$ with the vertices outside $D_N$ fused together into one boundary vertex $varrho$, we consider discrete-time simple random walks in $D_N cup{varrho}$ run for a time proportional to the expected cover time and describe the scaling limit of the exceptional level sets of the thick, thin, light and avoided points. We show that these are distributed, up a spatially-dependent log-normal factor, as the zero-average Liouville Quantum Gravity measures in $D$. The limit law of the local time configuration at, and nearby, the exceptional points is determined as well. The results extend earlier work by the first two authors who analyzed the continuous-time problem in the parametrization by the local time at $varrho$. A novel uniqueness result concerning divisible random measures and, in particular, Gaussian Multiplicative Chaos, is derived as part of the proofs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا