We consider reversible random walks in random environment obtained from symmetric long--range jump rates on a random point process. We prove almost sure transience and recurrence results under suitable assumptions on the point process and the jump rate function. For recurrent models we obtain almost sure estimates on effective resistances in finite boxes. For transient models we construct explicit fluxes with finite energy on the associated electrical network.
We investigate a large class of random graphs on the points of a Poisson process in $d$-dimensional space, which combine scale-free degree distributions and long-range effects. Every Poisson point carries an independent random weight and given weight
and position of the points we form an edge between two points independently with a probability depending on the two weights and the distance of the points. In dimensions $din{1,2}$ we completely characterise recurrence vs transience of random walks on the infinite cluster. In $dgeq 3$ we prove transience in all cases except for a regime where we conjecture that scale-free and long-range effects play no role. Our results are particularly interesting for the special case of the age-dependent random connection model recently introduced in [P. Gracar et al., The age-dependent random connection model, Queueing Syst. {bf 93} (2019), no.~3-4, 309--331. MR4032928].
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population gro
ws as fast as its expectation with strictly positive probability. If,on the other hand, $d le 2$, or the environment is ``random enough, then the total population grows strictly slower than its expectation almost surely. We show the equivalence between the slow population growth and a natural localization property in terms of replica overlap. We also prove a certain stronger localization property, whenever the total population grows strictly slower than its expectation almost surely.
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the
density of the population, together with upper bounds for the density of the most populated site and the replica overlap. We also discuss the phase transition of this model in connection with directed polymers in random environment.
Some stochastic systems are particularly interesting as they exhibit critical behavior without fine-tuning of a parameter, a phenomenon called self-organized criticality. In the context of driven-dissipative steady states, one of the main models is t
hat of Activated Random Walks. Long-range effects intrinsic to the conservative dynamics and lack of a simple algebraic structure cause standard tools and techniques to break down. This makes the mathematical study of this model remarkably challenging. Yet, some exciting progress has been made in the last ten years, with the development of a framework of tools and methods which is finally becoming more structured. In these lecture notes we present the existing results and reproduce the techniques developed so far.
We study continuous-time (variable speed) random walks in random environments on $mathbb{Z}^d$, $dge2$, where, at time $t$, the walk at $x$ jumps across edge $(x,y)$ at time-dependent rate $a_t(x,y)$. The rates, which we assume stationary and ergodic
with respect to space-time shifts, are symmetric and bounded but possibly degenerate in the sense that the total jump rate from a vertex may vanish over finite intervals of time. We formulate conditions on the environment under which the law of diffusively-scaled random walk path tends to Brownian motion for almost every sample of the rates. The proofs invoke Moser iteration to prove sublinearity of the corrector in pointwise sense; a key additional input is a conversion of certain weighted energy norms to ordinary ones. Our conclusions apply to random walks on dynamical bond percolation and interacting particle systems as well as to random walks arising from the Helffer-Sjostrand representation of gradient models with certain non-strictly convex potentials.
P. Caputo
,A. Faggionato
,A. Gaudilliere
.
(2008)
.
"Recurrence and transience for long-range reversible random walks on a random point process"
.
Alessandra Faggionato
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا