ﻻ يوجد ملخص باللغة العربية
The atmospheres of hot Jupiters and other strongly-forced exoplanets are susceptible to a thermal instability in the presence of ohmic dissipation, weak magnetic drag and strong winds. The instability occurs in radiatively-dominated atmospheric regions when the ohmic dissipation rate increases with temperature faster than the radiative (cooling) rate. The instability domain covers a specific range of atmospheric pressures and temperatures, typically P ~ 3-300 mbar and T ~ 1500-2500K for hot Jupiters, which makes it a candidate mechanism to explain the dayside thermal
Clouds are expected to form in a wide range of conditions in the atmosphere of exoplanets given the large range of possible condensible species. However this diversity might lead to very different small-scale dynamics depending on radiative transfer
When a planet transits in front of its host star, a fraction of its light is blocked, decreasing the observed flux from the star. The same is expected to occur when observing the stellar radio flux. However, at radio wavelengths, the planet also radi
Hot super-Earths likely possess minimal atmospheres established through vapor saturation equilibrium with the ground. We solve the hydrodynamics of these tenuous atmospheres at the surface of Corot-7b, Kepler 10b and 55 Cnc-e, including idealized tre
Interactions between the winds of stars and the magnetospheres and atmospheres of planets involve many processes, including the acceleration of particles, heating of upper atmospheres, and a diverse range of atmospheric loss processes. Winds remove a
Radiative transfer in planetary atmospheres is usually treated in the static limit, i.e., neglecting atmospheric motions. We argue that hot Jupiter atmospheres, with possibly fast (sonic) wind speeds, may require a more strongly coupled treatment, fo